用于高能锂电池siox基电极的仿生压电应力缓冲层。

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xing Chen,Wenru Li,Cizhen Luo,Huanrui Zhang,Chenhui Gao,Chenghao Sun,Rongxian Wu,Yifan Gong,Pengzhou Mu,Zhaolin Lv,Guanglei Cui
{"title":"用于高能锂电池siox基电极的仿生压电应力缓冲层。","authors":"Xing Chen,Wenru Li,Cizhen Luo,Huanrui Zhang,Chenhui Gao,Chenghao Sun,Rongxian Wu,Yifan Gong,Pengzhou Mu,Zhaolin Lv,Guanglei Cui","doi":"10.1002/adma.202504360","DOIUrl":null,"url":null,"abstract":"High-specific-capacity silicon suboxide (SiOx, 0 < x < 2) anodes have long faced the problems of huge volume expansion, fast capacity decay and unsatisfied rate performance. To overcome these bottlenecks, the volume expansion resistance and electrogenic Na+ transport functions of common rain frog (Breviceps adspersus) epidermis are introduced into the design philosophy of stress buffers for SiOx electrodes. Thereupon, a mechanically robust, piezoelectric (MP) stress buffer layer comprised of ferroelectric tetragonal BaTiO3 nanoparticles and a novel homopolymer (PCM) binder of cyanoethyl carbamate-containing methacrylate is developed. It is demonstrated that MP stress buffer layer with superior mechanical properties effectively inhibits excessive volume expansion and stabilizes the solid electrolyte interface along with much suppressed electrolyte decomposition. Meanwhile, MP stress buffer layer helps expedite the dealloying reaction kinetics of SiOx electrodes in half-cells, mainly owing to the generation of a stress-induced built-in electric field within MP stress buffer layer, conducive to improving battery rate performance. As a result, unprecedented cycling and rate performance can be realized in coin and home-made soft package cells with SiOx and SiOx/graphite composite electrodes. Such a design philosophy of stress buffer layers marks an important milestone in developing high-energy lithium batteries with SiOx-based anodes.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"14 1","pages":"e04360"},"PeriodicalIF":27.4000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bioinspired Piezoelectric Stress Buffer Layer for SiOx-Based Electrodes Toward High-Energy Lithium Batteries.\",\"authors\":\"Xing Chen,Wenru Li,Cizhen Luo,Huanrui Zhang,Chenhui Gao,Chenghao Sun,Rongxian Wu,Yifan Gong,Pengzhou Mu,Zhaolin Lv,Guanglei Cui\",\"doi\":\"10.1002/adma.202504360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-specific-capacity silicon suboxide (SiOx, 0 < x < 2) anodes have long faced the problems of huge volume expansion, fast capacity decay and unsatisfied rate performance. To overcome these bottlenecks, the volume expansion resistance and electrogenic Na+ transport functions of common rain frog (Breviceps adspersus) epidermis are introduced into the design philosophy of stress buffers for SiOx electrodes. Thereupon, a mechanically robust, piezoelectric (MP) stress buffer layer comprised of ferroelectric tetragonal BaTiO3 nanoparticles and a novel homopolymer (PCM) binder of cyanoethyl carbamate-containing methacrylate is developed. It is demonstrated that MP stress buffer layer with superior mechanical properties effectively inhibits excessive volume expansion and stabilizes the solid electrolyte interface along with much suppressed electrolyte decomposition. Meanwhile, MP stress buffer layer helps expedite the dealloying reaction kinetics of SiOx electrodes in half-cells, mainly owing to the generation of a stress-induced built-in electric field within MP stress buffer layer, conducive to improving battery rate performance. As a result, unprecedented cycling and rate performance can be realized in coin and home-made soft package cells with SiOx and SiOx/graphite composite electrodes. Such a design philosophy of stress buffer layers marks an important milestone in developing high-energy lithium batteries with SiOx-based anodes.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"14 1\",\"pages\":\"e04360\"},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202504360\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202504360","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

高比容亚氧化硅(SiOx, 0 < x < 2)阳极长期面临体积膨胀大、容量衰减快和倍率性能不理想的问题。为了克服这些瓶颈,将普通雨蛙(Breviceps adspersus)表皮的体积膨胀阻力和电致Na+运输功能引入SiOx电极应力缓冲的设计理念中。因此,开发了一种机械坚固的压电(MP)应力缓冲层,该缓冲层由铁电四方BaTiO3纳米颗粒和一种新型的均聚物(PCM)粘合剂组成。结果表明,MP应力缓冲层具有优异的力学性能,能有效抑制材料的体积膨胀,稳定固体电解质界面,有效抑制电解质分解。同时,MP应力缓冲层有助于加速SiOx电极在半电池中的脱合金反应动力学,这主要是由于MP应力缓冲层内产生应力诱导的内置电场,有利于提高电池倍率性能。因此,在使用SiOx和SiOx/石墨复合电极的硬币和自制软封装电池中,可以实现前所未有的循环和速率性能。这种应力缓冲层的设计理念标志着开发具有siox基阳极的高能锂电池的重要里程碑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Bioinspired Piezoelectric Stress Buffer Layer for SiOx-Based Electrodes Toward High-Energy Lithium Batteries.
High-specific-capacity silicon suboxide (SiOx, 0 < x < 2) anodes have long faced the problems of huge volume expansion, fast capacity decay and unsatisfied rate performance. To overcome these bottlenecks, the volume expansion resistance and electrogenic Na+ transport functions of common rain frog (Breviceps adspersus) epidermis are introduced into the design philosophy of stress buffers for SiOx electrodes. Thereupon, a mechanically robust, piezoelectric (MP) stress buffer layer comprised of ferroelectric tetragonal BaTiO3 nanoparticles and a novel homopolymer (PCM) binder of cyanoethyl carbamate-containing methacrylate is developed. It is demonstrated that MP stress buffer layer with superior mechanical properties effectively inhibits excessive volume expansion and stabilizes the solid electrolyte interface along with much suppressed electrolyte decomposition. Meanwhile, MP stress buffer layer helps expedite the dealloying reaction kinetics of SiOx electrodes in half-cells, mainly owing to the generation of a stress-induced built-in electric field within MP stress buffer layer, conducive to improving battery rate performance. As a result, unprecedented cycling and rate performance can be realized in coin and home-made soft package cells with SiOx and SiOx/graphite composite electrodes. Such a design philosophy of stress buffer layers marks an important milestone in developing high-energy lithium batteries with SiOx-based anodes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信