{"title":"噻吩扩展自组装单层膜作为有机太阳能电池的空穴传输层,效率为20.78。","authors":"Yuanpeng Xie,Jingfu Tian,Xiaxia Yang,Junbo Chen,Shan Yu,Dianyong Tang,Xiaotian Hu,Yanming Sun,Menglan Lv","doi":"10.1002/adma.202502485","DOIUrl":null,"url":null,"abstract":"Carbazole-derived self-assembled monolayers (SAMs) as hole transport layers (HTLs) have achieved groundbreaking progress of device efficiency in perovskite and organic photovoltaics. Expanding the π-conjugation of carbazole is an effective approach to enhance the molecular dipole moment and facilitate charge extraction of SAMs. However, this strategy tends to cause poor solubility and excessive self-aggregation of SAMs. In this work, two highly efficient SAMs are developed by substituting a non-fused thiophene unit on 3,6-position of carbazole, namely (2-(3,6-di(thiophen-3-yl)-9H-carbazol-9-yl)ethyl)phosphonate (2PAThCz) and diethyl (4-(3,6-di(thiophen-3-yl)-9H-carbazol-9-yl)butyl)phosphonate (4PAThCz). The introduction of thiophene can completely alter the molecular packing behavior of SAM, promoting more compact π-π stacking and increasing dipole moment, which enhances hole transport. Furthermore, the long spacer length on 4PAThCz enable to help it achieves excellent solubility, inhibit self-aggregation, and strengthen the molecular orderliness. As a result, an impressive efficiency of 20.78% (certified as 20.45%) is achieved for single-junction organic solar cells.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"14 1","pages":"e02485"},"PeriodicalIF":27.4000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thiophene Expanded Self-Assembled Monolayer as Hole Transport Layer for Organic Solar Cells with Efficiency of 20.78.\",\"authors\":\"Yuanpeng Xie,Jingfu Tian,Xiaxia Yang,Junbo Chen,Shan Yu,Dianyong Tang,Xiaotian Hu,Yanming Sun,Menglan Lv\",\"doi\":\"10.1002/adma.202502485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carbazole-derived self-assembled monolayers (SAMs) as hole transport layers (HTLs) have achieved groundbreaking progress of device efficiency in perovskite and organic photovoltaics. Expanding the π-conjugation of carbazole is an effective approach to enhance the molecular dipole moment and facilitate charge extraction of SAMs. However, this strategy tends to cause poor solubility and excessive self-aggregation of SAMs. In this work, two highly efficient SAMs are developed by substituting a non-fused thiophene unit on 3,6-position of carbazole, namely (2-(3,6-di(thiophen-3-yl)-9H-carbazol-9-yl)ethyl)phosphonate (2PAThCz) and diethyl (4-(3,6-di(thiophen-3-yl)-9H-carbazol-9-yl)butyl)phosphonate (4PAThCz). The introduction of thiophene can completely alter the molecular packing behavior of SAM, promoting more compact π-π stacking and increasing dipole moment, which enhances hole transport. Furthermore, the long spacer length on 4PAThCz enable to help it achieves excellent solubility, inhibit self-aggregation, and strengthen the molecular orderliness. As a result, an impressive efficiency of 20.78% (certified as 20.45%) is achieved for single-junction organic solar cells.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"14 1\",\"pages\":\"e02485\"},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202502485\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202502485","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Thiophene Expanded Self-Assembled Monolayer as Hole Transport Layer for Organic Solar Cells with Efficiency of 20.78.
Carbazole-derived self-assembled monolayers (SAMs) as hole transport layers (HTLs) have achieved groundbreaking progress of device efficiency in perovskite and organic photovoltaics. Expanding the π-conjugation of carbazole is an effective approach to enhance the molecular dipole moment and facilitate charge extraction of SAMs. However, this strategy tends to cause poor solubility and excessive self-aggregation of SAMs. In this work, two highly efficient SAMs are developed by substituting a non-fused thiophene unit on 3,6-position of carbazole, namely (2-(3,6-di(thiophen-3-yl)-9H-carbazol-9-yl)ethyl)phosphonate (2PAThCz) and diethyl (4-(3,6-di(thiophen-3-yl)-9H-carbazol-9-yl)butyl)phosphonate (4PAThCz). The introduction of thiophene can completely alter the molecular packing behavior of SAM, promoting more compact π-π stacking and increasing dipole moment, which enhances hole transport. Furthermore, the long spacer length on 4PAThCz enable to help it achieves excellent solubility, inhibit self-aggregation, and strengthen the molecular orderliness. As a result, an impressive efficiency of 20.78% (certified as 20.45%) is achieved for single-junction organic solar cells.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.