在pemfc中裁剪COFs与水和氧途径的高效催化剂界面。

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jiamin Zhang,Zhixin Zhang,Xiuyang Zou,Zheng Shi,Mingqing Shan,Zhe Sun,Siyu Guo,Feng Yan
{"title":"在pemfc中裁剪COFs与水和氧途径的高效催化剂界面。","authors":"Jiamin Zhang,Zhixin Zhang,Xiuyang Zou,Zheng Shi,Mingqing Shan,Zhe Sun,Siyu Guo,Feng Yan","doi":"10.1002/adma.202509000","DOIUrl":null,"url":null,"abstract":"Proton exchange membrane fuel cells (PEMFCs) have gained significant attention due to their high efficiency and clean emissions. However, reducing platinum (Pt) loadings in PEMFCs remains challenging due to the high mass transport resistance near the catalyst surfaces. This study investigates phosphorylated covalent organic frameworks (P-rCOFs) as ionomers in PEMFCs, aiming to optimize the three-phase interface at the catalyst surface. Through the protonation of tertiary amine sites and precise structural engineering of side chains within the COF framework, well-defined transport channels are created to enhance water and oxygen mass transfer. The results demonstrate that P-rCOF-C4 significantly improves the catalytic performance of commercial Pt/C catalysts, with a half-wave potential 37 mV higher than Nafion. Furthermore, a PEMFC incorporating P-rCOF-C4 as an ionomer binder achieves a peak power density of 2.40 W cm-2 at 0.1 mg cm-2 catalyst loading, a 1.5 fold increase over Nafion. This work underscores the potential of P-rCOFs in optimizing the three-phase interface, offering a promising pathway for more efficient and cost-effective PEMFCs.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"35 1","pages":"e09000"},"PeriodicalIF":27.4000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailoring COFs with Water and Oxygen Pathways for Efficient Catalyst Interfaces in PEMFCs.\",\"authors\":\"Jiamin Zhang,Zhixin Zhang,Xiuyang Zou,Zheng Shi,Mingqing Shan,Zhe Sun,Siyu Guo,Feng Yan\",\"doi\":\"10.1002/adma.202509000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proton exchange membrane fuel cells (PEMFCs) have gained significant attention due to their high efficiency and clean emissions. However, reducing platinum (Pt) loadings in PEMFCs remains challenging due to the high mass transport resistance near the catalyst surfaces. This study investigates phosphorylated covalent organic frameworks (P-rCOFs) as ionomers in PEMFCs, aiming to optimize the three-phase interface at the catalyst surface. Through the protonation of tertiary amine sites and precise structural engineering of side chains within the COF framework, well-defined transport channels are created to enhance water and oxygen mass transfer. The results demonstrate that P-rCOF-C4 significantly improves the catalytic performance of commercial Pt/C catalysts, with a half-wave potential 37 mV higher than Nafion. Furthermore, a PEMFC incorporating P-rCOF-C4 as an ionomer binder achieves a peak power density of 2.40 W cm-2 at 0.1 mg cm-2 catalyst loading, a 1.5 fold increase over Nafion. This work underscores the potential of P-rCOFs in optimizing the three-phase interface, offering a promising pathway for more efficient and cost-effective PEMFCs.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"35 1\",\"pages\":\"e09000\"},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202509000\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202509000","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

质子交换膜燃料电池(pemfc)因其高效、清洁的排放特性而受到广泛关注。然而,由于催化剂表面附近的高质量传输阻力,减少pemfc中铂(Pt)的负载仍然具有挑战性。本研究研究了磷酸化共价有机框架(P-rCOFs)作为pemfc中的离子,旨在优化催化剂表面的三相界面。通过叔胺位点的质子化和COF框架内侧链的精确结构工程,创建了明确的运输通道,以增强水和氧的传质。结果表明,P-rCOF-C4显著提高了Pt/C催化剂的催化性能,其半波电位比Nafion高37 mV。此外,将P-rCOF-C4作为离子粘合剂的PEMFC在0.1 mg cm-2催化剂负载下的峰值功率密度为2.40 W cm-2,是Nafion的1.5倍。这项工作强调了P-rCOFs在优化三相界面方面的潜力,为更高效、更经济的PEMFCs提供了一条有希望的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tailoring COFs with Water and Oxygen Pathways for Efficient Catalyst Interfaces in PEMFCs.
Proton exchange membrane fuel cells (PEMFCs) have gained significant attention due to their high efficiency and clean emissions. However, reducing platinum (Pt) loadings in PEMFCs remains challenging due to the high mass transport resistance near the catalyst surfaces. This study investigates phosphorylated covalent organic frameworks (P-rCOFs) as ionomers in PEMFCs, aiming to optimize the three-phase interface at the catalyst surface. Through the protonation of tertiary amine sites and precise structural engineering of side chains within the COF framework, well-defined transport channels are created to enhance water and oxygen mass transfer. The results demonstrate that P-rCOF-C4 significantly improves the catalytic performance of commercial Pt/C catalysts, with a half-wave potential 37 mV higher than Nafion. Furthermore, a PEMFC incorporating P-rCOF-C4 as an ionomer binder achieves a peak power density of 2.40 W cm-2 at 0.1 mg cm-2 catalyst loading, a 1.5 fold increase over Nafion. This work underscores the potential of P-rCOFs in optimizing the three-phase interface, offering a promising pathway for more efficient and cost-effective PEMFCs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信