低损耗钠超表面的超快等离子体动力学。

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-07-21 DOI:10.1021/acsnano.5c04946
Conrad A. Kocoj, Xinran Xie, Hongyu Jiang, Shunran Li, Suchismita Sarker, Ankun Yang and Peijun Guo*, 
{"title":"低损耗钠超表面的超快等离子体动力学。","authors":"Conrad A. Kocoj,&nbsp;Xinran Xie,&nbsp;Hongyu Jiang,&nbsp;Shunran Li,&nbsp;Suchismita Sarker,&nbsp;Ankun Yang and Peijun Guo*,&nbsp;","doi":"10.1021/acsnano.5c04946","DOIUrl":null,"url":null,"abstract":"<p >Alkali metals are considered as a promising alternative to conventional noble metals for plasmonic applications, offering lower optical loss and significantly reduced material costs. The recent development of a thermo-assisted spin-coating process paired with phase-shift photolithography has enabled the creation of stable nanostructured sodium, which exhibits narrow resonances in the near-infrared (NIR) region and demonstrates free electron relaxation times comparable to noble metals. Through the control of nanostructure pitch and light incident angle, the surface plasmon polariton (SPP) resonance wavelength can be tuned throughout the visible and NIR regions, making nanostructured sodium particularly attractive for nanophotonics, surface-enhanced sensing, and photocatalytic applications. In this work, we investigate hot electron dynamics in nanostructured sodium thin films on polyurethane supports by leveraging the high sensitivity of SPPs to their metal’s bulk properties. Through optical transient reflectance measurements, we probe the distinct signatures of electron–electron and electron–phonon interactions in sodium at ultrafast time scales. Our results show the unique early time response of sodium that differs from those observed in noble metals, providing key insight into sodium-based plasmonics. This comprehensive understanding of hot electron dynamics will enable more efficient design and implementation of sodium in next-generation plasmonic devices and applications where hot electron processes are critical considerations.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 30","pages":"27310–27317"},"PeriodicalIF":16.0000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrafast Plasmon Dynamics of Low-Loss Sodium Metasurfaces\",\"authors\":\"Conrad A. Kocoj,&nbsp;Xinran Xie,&nbsp;Hongyu Jiang,&nbsp;Shunran Li,&nbsp;Suchismita Sarker,&nbsp;Ankun Yang and Peijun Guo*,&nbsp;\",\"doi\":\"10.1021/acsnano.5c04946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Alkali metals are considered as a promising alternative to conventional noble metals for plasmonic applications, offering lower optical loss and significantly reduced material costs. The recent development of a thermo-assisted spin-coating process paired with phase-shift photolithography has enabled the creation of stable nanostructured sodium, which exhibits narrow resonances in the near-infrared (NIR) region and demonstrates free electron relaxation times comparable to noble metals. Through the control of nanostructure pitch and light incident angle, the surface plasmon polariton (SPP) resonance wavelength can be tuned throughout the visible and NIR regions, making nanostructured sodium particularly attractive for nanophotonics, surface-enhanced sensing, and photocatalytic applications. In this work, we investigate hot electron dynamics in nanostructured sodium thin films on polyurethane supports by leveraging the high sensitivity of SPPs to their metal’s bulk properties. Through optical transient reflectance measurements, we probe the distinct signatures of electron–electron and electron–phonon interactions in sodium at ultrafast time scales. Our results show the unique early time response of sodium that differs from those observed in noble metals, providing key insight into sodium-based plasmonics. This comprehensive understanding of hot electron dynamics will enable more efficient design and implementation of sodium in next-generation plasmonic devices and applications where hot electron processes are critical considerations.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 30\",\"pages\":\"27310–27317\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5c04946\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c04946","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

碱金属被认为是等离子体应用中传统贵金属的有前途的替代品,具有较低的光学损耗和显著降低的材料成本。最近发展的热辅助自旋涂层工艺与相移光刻技术相结合,使稳定的纳米结构钠得以产生,其在近红外(NIR)区域表现出窄共振,并显示出与贵金属相当的自由电子弛豫时间。通过控制纳米结构间距和光入射角,表面等离子激元(SPP)共振波长可以在整个可见光和近红外区域进行调谐,使纳米结构钠在纳米光子学、表面增强传感和光催化应用方面特别有吸引力。在这项工作中,我们利用SPPs对其金属体积特性的高灵敏度,研究了聚氨酯支撑纳米结构钠薄膜的热电子动力学。通过光学瞬态反射测量,我们在超快时间尺度上探测了钠中电子-电子和电子-声子相互作用的独特特征。我们的研究结果显示了钠的独特的早期响应,不同于在贵金属中观察到的,为钠基等离子体动力学提供了关键的见解。这种对热电子动力学的全面理解将使钠在下一代等离子体器件和应用中更有效地设计和实现,其中热电子过程是关键考虑因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ultrafast Plasmon Dynamics of Low-Loss Sodium Metasurfaces

Ultrafast Plasmon Dynamics of Low-Loss Sodium Metasurfaces

Alkali metals are considered as a promising alternative to conventional noble metals for plasmonic applications, offering lower optical loss and significantly reduced material costs. The recent development of a thermo-assisted spin-coating process paired with phase-shift photolithography has enabled the creation of stable nanostructured sodium, which exhibits narrow resonances in the near-infrared (NIR) region and demonstrates free electron relaxation times comparable to noble metals. Through the control of nanostructure pitch and light incident angle, the surface plasmon polariton (SPP) resonance wavelength can be tuned throughout the visible and NIR regions, making nanostructured sodium particularly attractive for nanophotonics, surface-enhanced sensing, and photocatalytic applications. In this work, we investigate hot electron dynamics in nanostructured sodium thin films on polyurethane supports by leveraging the high sensitivity of SPPs to their metal’s bulk properties. Through optical transient reflectance measurements, we probe the distinct signatures of electron–electron and electron–phonon interactions in sodium at ultrafast time scales. Our results show the unique early time response of sodium that differs from those observed in noble metals, providing key insight into sodium-based plasmonics. This comprehensive understanding of hot electron dynamics will enable more efficient design and implementation of sodium in next-generation plasmonic devices and applications where hot electron processes are critical considerations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信