立方氮化硼相干界面增强铜纳米膜的超低电阻率研究。

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jiamiao Ni, Naiqi Chen, Boan Zhong, Kunming Yang, Jian Song, Quan Li, Peipei Wang, Jinsong Chen, Yue Liu*, Engang Fu* and Tongxiang Fan*, 
{"title":"立方氮化硼相干界面增强铜纳米膜的超低电阻率研究。","authors":"Jiamiao Ni,&nbsp;Naiqi Chen,&nbsp;Boan Zhong,&nbsp;Kunming Yang,&nbsp;Jian Song,&nbsp;Quan Li,&nbsp;Peipei Wang,&nbsp;Jinsong Chen,&nbsp;Yue Liu*,&nbsp;Engang Fu* and Tongxiang Fan*,&nbsp;","doi":"10.1021/acsami.5c10467","DOIUrl":null,"url":null,"abstract":"<p >The continuous miniaturization of microelectronic interconnects is encountering fundamental limitations due to the increasing resistance-capacitance delay and reliability degradation. Here, we synthesized epitaxial copper/cubic boron nitride (Cu/c-BN) nanofilms with coherent interface. The results demonstrated that the c-BN exhibited exceptional potential in reducing the electrical resistivity of Cu interconnects while enhancing their stability. Owing to the coherent interface and low interfacial electron density of states in Cu/c-BN, c-BN can optimize surface electron scattering in Cu films. Cu/c-BN interfaces display low surface electron scattering, with an exceptionally high surface electron scattering coefficient of 0.67. At a thickness of 2.5 nm, the resistivity of Cu/c-BN is reduced by ∼32.7%, compared to the traditional Cu/barrier multilayers (e.g., Cu/TaN). In addition, due to the high bonding strength and stability, c-BN exhibited high diffusion activation energy (1.39 eV) at 2.5 nm, suggesting its potential as a promising diffusional barrier candidate for sub-3 nm microelectronic interconnection applications.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 30","pages":"43916–43925"},"PeriodicalIF":8.2000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultralow Resistivity of Copper Nanofilms Enhanced by Cubic Boron Nitride Coherent Interface\",\"authors\":\"Jiamiao Ni,&nbsp;Naiqi Chen,&nbsp;Boan Zhong,&nbsp;Kunming Yang,&nbsp;Jian Song,&nbsp;Quan Li,&nbsp;Peipei Wang,&nbsp;Jinsong Chen,&nbsp;Yue Liu*,&nbsp;Engang Fu* and Tongxiang Fan*,&nbsp;\",\"doi\":\"10.1021/acsami.5c10467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The continuous miniaturization of microelectronic interconnects is encountering fundamental limitations due to the increasing resistance-capacitance delay and reliability degradation. Here, we synthesized epitaxial copper/cubic boron nitride (Cu/c-BN) nanofilms with coherent interface. The results demonstrated that the c-BN exhibited exceptional potential in reducing the electrical resistivity of Cu interconnects while enhancing their stability. Owing to the coherent interface and low interfacial electron density of states in Cu/c-BN, c-BN can optimize surface electron scattering in Cu films. Cu/c-BN interfaces display low surface electron scattering, with an exceptionally high surface electron scattering coefficient of 0.67. At a thickness of 2.5 nm, the resistivity of Cu/c-BN is reduced by ∼32.7%, compared to the traditional Cu/barrier multilayers (e.g., Cu/TaN). In addition, due to the high bonding strength and stability, c-BN exhibited high diffusion activation energy (1.39 eV) at 2.5 nm, suggesting its potential as a promising diffusional barrier candidate for sub-3 nm microelectronic interconnection applications.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"17 30\",\"pages\":\"43916–43925\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.5c10467\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.5c10467","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

微电子互连的持续小型化由于电阻-电容延迟的增加和可靠性的下降而遇到了根本性的限制。本文合成了具有相干界面的外延铜/立方氮化硼(Cu/c-BN)纳米膜。结果表明,c-BN在降低铜互连的电阻率和提高其稳定性方面表现出优异的潜力。由于Cu/c-BN的相干界面和低的界面电子密度,c-BN可以优化Cu膜中的表面电子散射。Cu/c-BN界面表现出较低的表面电子散射,表面电子散射系数异常高,为0.67。在厚度为2.5 nm时,Cu/c-BN的电阻率比传统的Cu/势垒多层(例如Cu/TaN)降低了~ 32.7%。此外,由于c-BN具有较高的键合强度和稳定性,在2.5 nm处表现出较高的扩散活化能(1.39 eV),表明其有潜力成为3 nm以下微电子互连应用的扩散势垒候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ultralow Resistivity of Copper Nanofilms Enhanced by Cubic Boron Nitride Coherent Interface

Ultralow Resistivity of Copper Nanofilms Enhanced by Cubic Boron Nitride Coherent Interface

The continuous miniaturization of microelectronic interconnects is encountering fundamental limitations due to the increasing resistance-capacitance delay and reliability degradation. Here, we synthesized epitaxial copper/cubic boron nitride (Cu/c-BN) nanofilms with coherent interface. The results demonstrated that the c-BN exhibited exceptional potential in reducing the electrical resistivity of Cu interconnects while enhancing their stability. Owing to the coherent interface and low interfacial electron density of states in Cu/c-BN, c-BN can optimize surface electron scattering in Cu films. Cu/c-BN interfaces display low surface electron scattering, with an exceptionally high surface electron scattering coefficient of 0.67. At a thickness of 2.5 nm, the resistivity of Cu/c-BN is reduced by ∼32.7%, compared to the traditional Cu/barrier multilayers (e.g., Cu/TaN). In addition, due to the high bonding strength and stability, c-BN exhibited high diffusion activation energy (1.39 eV) at 2.5 nm, suggesting its potential as a promising diffusional barrier candidate for sub-3 nm microelectronic interconnection applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信