{"title":"通过几何对齐实现实时数据高效的肖像样式化。","authors":"Xinrui Wang, Zhuoru Li, Xuanyu Yin, Xiao Zhou, Yusuke Iwasawa, Yutaka Matsuo, Jiaxian Guo","doi":"10.1016/j.neunet.2025.107774","DOIUrl":null,"url":null,"abstract":"<p><p>Portrait Stylization aims to imbue portrait photos with vivid artistic effects drawn from style examples. Despite the availability of enormous training datasets and large network weights, existing methods struggle to maintain geometric consistency and achieve satisfactory stylization effects due to the disparity in facial feature distributions between facial photographs and stylized images, limiting the application on rare styles and mobile devices. To alleviate this, we propose to establish meaningful geometric correlations between portraits and style samples to simplify the stylization by aligning corresponding facial characteristics. Specifically, we integrate differentiable Thin-Plate-Spline (TPS) modules into an end-to-end Generative Adversarial Network (GAN) framework to improve the training efficiency and promote the consistency of facial identities. By leveraging inherent structural information of faces, e.g., facial landmarks, TPS module can establish geometric alignments between the two domains, at global and local scales, both in pixel and feature spaces, thereby overcoming the aforementioned challenges. Quantitative and qualitative comparisons on a range of portrait stylization tasks demonstrate that our models not only outperforms existing models in terms of fidelity and stylistic consistency, but also achieves remarkable improvements in 2× training data efficiency and 100× less computational complexity, allowing our lightweight model to achieve real-time inference (30 FPS) at 512*512 resolution on mobile devices.</p>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"191 ","pages":"107774"},"PeriodicalIF":6.3000,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-time data-efficient portrait stylization via geometric alignment.\",\"authors\":\"Xinrui Wang, Zhuoru Li, Xuanyu Yin, Xiao Zhou, Yusuke Iwasawa, Yutaka Matsuo, Jiaxian Guo\",\"doi\":\"10.1016/j.neunet.2025.107774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Portrait Stylization aims to imbue portrait photos with vivid artistic effects drawn from style examples. Despite the availability of enormous training datasets and large network weights, existing methods struggle to maintain geometric consistency and achieve satisfactory stylization effects due to the disparity in facial feature distributions between facial photographs and stylized images, limiting the application on rare styles and mobile devices. To alleviate this, we propose to establish meaningful geometric correlations between portraits and style samples to simplify the stylization by aligning corresponding facial characteristics. Specifically, we integrate differentiable Thin-Plate-Spline (TPS) modules into an end-to-end Generative Adversarial Network (GAN) framework to improve the training efficiency and promote the consistency of facial identities. By leveraging inherent structural information of faces, e.g., facial landmarks, TPS module can establish geometric alignments between the two domains, at global and local scales, both in pixel and feature spaces, thereby overcoming the aforementioned challenges. Quantitative and qualitative comparisons on a range of portrait stylization tasks demonstrate that our models not only outperforms existing models in terms of fidelity and stylistic consistency, but also achieves remarkable improvements in 2× training data efficiency and 100× less computational complexity, allowing our lightweight model to achieve real-time inference (30 FPS) at 512*512 resolution on mobile devices.</p>\",\"PeriodicalId\":49763,\"journal\":{\"name\":\"Neural Networks\",\"volume\":\"191 \",\"pages\":\"107774\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neunet.2025.107774\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.neunet.2025.107774","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Real-time data-efficient portrait stylization via geometric alignment.
Portrait Stylization aims to imbue portrait photos with vivid artistic effects drawn from style examples. Despite the availability of enormous training datasets and large network weights, existing methods struggle to maintain geometric consistency and achieve satisfactory stylization effects due to the disparity in facial feature distributions between facial photographs and stylized images, limiting the application on rare styles and mobile devices. To alleviate this, we propose to establish meaningful geometric correlations between portraits and style samples to simplify the stylization by aligning corresponding facial characteristics. Specifically, we integrate differentiable Thin-Plate-Spline (TPS) modules into an end-to-end Generative Adversarial Network (GAN) framework to improve the training efficiency and promote the consistency of facial identities. By leveraging inherent structural information of faces, e.g., facial landmarks, TPS module can establish geometric alignments between the two domains, at global and local scales, both in pixel and feature spaces, thereby overcoming the aforementioned challenges. Quantitative and qualitative comparisons on a range of portrait stylization tasks demonstrate that our models not only outperforms existing models in terms of fidelity and stylistic consistency, but also achieves remarkable improvements in 2× training data efficiency and 100× less computational complexity, allowing our lightweight model to achieve real-time inference (30 FPS) at 512*512 resolution on mobile devices.
期刊介绍:
Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.