{"title":"果蝇摄食行为的高通量测量。","authors":"Huai-Zheng Zheng, Shuo Song, Jing-Hao Tang, Hong-Shan Liu, Man Song, Zhen-Xia Chen","doi":"10.1016/j.crmeth.2025.101109","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate measurement of Drosophila feeding is vital for metabolic and aging studies, but current assays lack the throughput and sensitivity needed for large-scale screens. We introduce FlyPlate-BCA, a 96-well platform that combines automated single-fly tracking with BCA protein quantification for high-resolution, longitudinal intake measurements. FlyPlate-BCA detects a 0.1× nutrient dilution with 90% power using just four replicates, three times fewer than the capillary feeder (CAFE) assay. It uncovers sucrose-driven hyperphagia independent of osmotic stress and preserved lipid-satiety responses, while extended monitoring reveals a female-specific metabolic adaptation. By delivering individual-level data at scale, FlyPlate-BCA establishes a benchmark for nutritional genomics and appetite neurobiology and streamlines nutraceutical and genetic screening.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"101109"},"PeriodicalIF":4.5000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12461584/pdf/","citationCount":"0","resultStr":"{\"title\":\"High-throughput measurement of Drosophila feeding behavior.\",\"authors\":\"Huai-Zheng Zheng, Shuo Song, Jing-Hao Tang, Hong-Shan Liu, Man Song, Zhen-Xia Chen\",\"doi\":\"10.1016/j.crmeth.2025.101109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate measurement of Drosophila feeding is vital for metabolic and aging studies, but current assays lack the throughput and sensitivity needed for large-scale screens. We introduce FlyPlate-BCA, a 96-well platform that combines automated single-fly tracking with BCA protein quantification for high-resolution, longitudinal intake measurements. FlyPlate-BCA detects a 0.1× nutrient dilution with 90% power using just four replicates, three times fewer than the capillary feeder (CAFE) assay. It uncovers sucrose-driven hyperphagia independent of osmotic stress and preserved lipid-satiety responses, while extended monitoring reveals a female-specific metabolic adaptation. By delivering individual-level data at scale, FlyPlate-BCA establishes a benchmark for nutritional genomics and appetite neurobiology and streamlines nutraceutical and genetic screening.</p>\",\"PeriodicalId\":29773,\"journal\":{\"name\":\"Cell Reports Methods\",\"volume\":\" \",\"pages\":\"101109\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12461584/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.crmeth.2025.101109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2025.101109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
High-throughput measurement of Drosophila feeding behavior.
Accurate measurement of Drosophila feeding is vital for metabolic and aging studies, but current assays lack the throughput and sensitivity needed for large-scale screens. We introduce FlyPlate-BCA, a 96-well platform that combines automated single-fly tracking with BCA protein quantification for high-resolution, longitudinal intake measurements. FlyPlate-BCA detects a 0.1× nutrient dilution with 90% power using just four replicates, three times fewer than the capillary feeder (CAFE) assay. It uncovers sucrose-driven hyperphagia independent of osmotic stress and preserved lipid-satiety responses, while extended monitoring reveals a female-specific metabolic adaptation. By delivering individual-level data at scale, FlyPlate-BCA establishes a benchmark for nutritional genomics and appetite neurobiology and streamlines nutraceutical and genetic screening.