利用敲除B2M和过表达CD47/HLA-E构建免疫逃避性iPSCs。

IF 4.4 4区 医学 Q2 CELL & TISSUE ENGINEERING
Cha Yeon Kim, Cholong Jeong, Yeon-Ju Jeong, Young Hoon Sung, Youngjin Han, Changmo Hwang
{"title":"利用敲除B2M和过表达CD47/HLA-E构建免疫逃避性iPSCs。","authors":"Cha Yeon Kim, Cholong Jeong, Yeon-Ju Jeong, Young Hoon Sung, Youngjin Han, Changmo Hwang","doi":"10.1007/s13770-025-00742-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Induced pluripotent stem cells (iPSCs) represent a promising source for regenerative therapies, yet allogeneic transplantation is limited by immune rejection. While strategies for generating hypoimmune iPSCs have been proposed, their efficacy after differentiation into lineage-specific cell types remains underexplored.</p><p><strong>Methods: </strong>A human iPSC line (36A) from peripheral blood mononuclear cells using a Sendai virus-based reprogramming protocol. Hypoimmune properties were conferred via CRISPR-Cpf1-mediated B2M knockout, combined with lentiviral overexpression of HLA-E and CD47. Immune evasion was validated using NK cell cytotoxicity assays. Endothelial differentiation was induced using a defined, stepwise protocol, and in vivo functionality was evaluated in humanized NSG mice.</p><p><strong>Results: </strong>The hypoimmune iPSCs retained pluripotency, exhibited stable karyotype, and demonstrated > 99% expression of HLA-E/CD47. NK cell-mediated lysis was significantly reduced in edited cells, although IFN-γ levels remained elevated. Upon differentiation, the hypoimmune iPSCs yielded > 98% CD31<sup>+</sup>CD144<sup>+</sup> endothelial cells, which showed enhanced survival in vivo compared to wild-type controls.</p><p><strong>Conclusion: </strong>Multiplex gene editing successfully conferred durable immune evasion in both undifferentiated and endothelial-differentiated iPSCs. These findings support the clinical potential of hypoimmune iPSC-derived cell therapies for allogeneic transplantation without immunosuppression.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Establishment of Immune-Evasive iPSCs from PBMCs Using B2M Knockout and CD47/HLA-E Overexpression.\",\"authors\":\"Cha Yeon Kim, Cholong Jeong, Yeon-Ju Jeong, Young Hoon Sung, Youngjin Han, Changmo Hwang\",\"doi\":\"10.1007/s13770-025-00742-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Induced pluripotent stem cells (iPSCs) represent a promising source for regenerative therapies, yet allogeneic transplantation is limited by immune rejection. While strategies for generating hypoimmune iPSCs have been proposed, their efficacy after differentiation into lineage-specific cell types remains underexplored.</p><p><strong>Methods: </strong>A human iPSC line (36A) from peripheral blood mononuclear cells using a Sendai virus-based reprogramming protocol. Hypoimmune properties were conferred via CRISPR-Cpf1-mediated B2M knockout, combined with lentiviral overexpression of HLA-E and CD47. Immune evasion was validated using NK cell cytotoxicity assays. Endothelial differentiation was induced using a defined, stepwise protocol, and in vivo functionality was evaluated in humanized NSG mice.</p><p><strong>Results: </strong>The hypoimmune iPSCs retained pluripotency, exhibited stable karyotype, and demonstrated > 99% expression of HLA-E/CD47. NK cell-mediated lysis was significantly reduced in edited cells, although IFN-γ levels remained elevated. Upon differentiation, the hypoimmune iPSCs yielded > 98% CD31<sup>+</sup>CD144<sup>+</sup> endothelial cells, which showed enhanced survival in vivo compared to wild-type controls.</p><p><strong>Conclusion: </strong>Multiplex gene editing successfully conferred durable immune evasion in both undifferentiated and endothelial-differentiated iPSCs. These findings support the clinical potential of hypoimmune iPSC-derived cell therapies for allogeneic transplantation without immunosuppression.</p>\",\"PeriodicalId\":23126,\"journal\":{\"name\":\"Tissue engineering and regenerative medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue engineering and regenerative medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13770-025-00742-9\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering and regenerative medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13770-025-00742-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

背景:诱导多能干细胞(iPSCs)是一种很有前途的再生治疗来源,但同种异体移植受到免疫排斥的限制。虽然已经提出了产生低免疫多能干细胞的策略,但它们在分化为谱系特异性细胞类型后的功效仍未得到充分探讨。方法:采用基于仙台病毒的重编程方案,从人外周血单个核细胞中提取iPSC细胞系(36A)。通过crispr - cpf1介导的B2M敲除,结合慢病毒HLA-E和CD47的过表达,赋予低免疫特性。通过NK细胞毒性试验验证了免疫逃逸。采用一种明确的逐步方案诱导内皮分化,并在人源化NSG小鼠中评估其体内功能。结果:低免疫诱导多能干细胞保持多能性,核型稳定,HLA-E/CD47的表达率高达99%。NK细胞介导的裂解在编辑细胞中显著减少,尽管IFN-γ水平仍然升高。分化后,低免疫iPSCs产生了bb0 98%的CD31+CD144+内皮细胞,与野生型对照相比,在体内存活率更高。结论:多重基因编辑成功地在未分化和内皮分化的iPSCs中实现了持久的免疫逃避。这些发现支持低免疫ipsc衍生细胞治疗无免疫抑制异体移植的临床潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Establishment of Immune-Evasive iPSCs from PBMCs Using B2M Knockout and CD47/HLA-E Overexpression.

Background: Induced pluripotent stem cells (iPSCs) represent a promising source for regenerative therapies, yet allogeneic transplantation is limited by immune rejection. While strategies for generating hypoimmune iPSCs have been proposed, their efficacy after differentiation into lineage-specific cell types remains underexplored.

Methods: A human iPSC line (36A) from peripheral blood mononuclear cells using a Sendai virus-based reprogramming protocol. Hypoimmune properties were conferred via CRISPR-Cpf1-mediated B2M knockout, combined with lentiviral overexpression of HLA-E and CD47. Immune evasion was validated using NK cell cytotoxicity assays. Endothelial differentiation was induced using a defined, stepwise protocol, and in vivo functionality was evaluated in humanized NSG mice.

Results: The hypoimmune iPSCs retained pluripotency, exhibited stable karyotype, and demonstrated > 99% expression of HLA-E/CD47. NK cell-mediated lysis was significantly reduced in edited cells, although IFN-γ levels remained elevated. Upon differentiation, the hypoimmune iPSCs yielded > 98% CD31+CD144+ endothelial cells, which showed enhanced survival in vivo compared to wild-type controls.

Conclusion: Multiplex gene editing successfully conferred durable immune evasion in both undifferentiated and endothelial-differentiated iPSCs. These findings support the clinical potential of hypoimmune iPSC-derived cell therapies for allogeneic transplantation without immunosuppression.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tissue engineering and regenerative medicine
Tissue engineering and regenerative medicine CELL & TISSUE ENGINEERING-ENGINEERING, BIOMEDICAL
CiteScore
6.80
自引率
5.60%
发文量
83
审稿时长
6-12 weeks
期刊介绍: Tissue Engineering and Regenerative Medicine (Tissue Eng Regen Med, TERM), the official journal of the Korean Tissue Engineering and Regenerative Medicine Society, is a publication dedicated to providing research- based solutions to issues related to human diseases. This journal publishes articles that report substantial information and original findings on tissue engineering, medical biomaterials, cells therapy, stem cell biology and regenerative medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信