Cha Yeon Kim, Cholong Jeong, Yeon-Ju Jeong, Young Hoon Sung, Youngjin Han, Changmo Hwang
{"title":"利用敲除B2M和过表达CD47/HLA-E构建免疫逃避性iPSCs。","authors":"Cha Yeon Kim, Cholong Jeong, Yeon-Ju Jeong, Young Hoon Sung, Youngjin Han, Changmo Hwang","doi":"10.1007/s13770-025-00742-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Induced pluripotent stem cells (iPSCs) represent a promising source for regenerative therapies, yet allogeneic transplantation is limited by immune rejection. While strategies for generating hypoimmune iPSCs have been proposed, their efficacy after differentiation into lineage-specific cell types remains underexplored.</p><p><strong>Methods: </strong>A human iPSC line (36A) from peripheral blood mononuclear cells using a Sendai virus-based reprogramming protocol. Hypoimmune properties were conferred via CRISPR-Cpf1-mediated B2M knockout, combined with lentiviral overexpression of HLA-E and CD47. Immune evasion was validated using NK cell cytotoxicity assays. Endothelial differentiation was induced using a defined, stepwise protocol, and in vivo functionality was evaluated in humanized NSG mice.</p><p><strong>Results: </strong>The hypoimmune iPSCs retained pluripotency, exhibited stable karyotype, and demonstrated > 99% expression of HLA-E/CD47. NK cell-mediated lysis was significantly reduced in edited cells, although IFN-γ levels remained elevated. Upon differentiation, the hypoimmune iPSCs yielded > 98% CD31<sup>+</sup>CD144<sup>+</sup> endothelial cells, which showed enhanced survival in vivo compared to wild-type controls.</p><p><strong>Conclusion: </strong>Multiplex gene editing successfully conferred durable immune evasion in both undifferentiated and endothelial-differentiated iPSCs. These findings support the clinical potential of hypoimmune iPSC-derived cell therapies for allogeneic transplantation without immunosuppression.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Establishment of Immune-Evasive iPSCs from PBMCs Using B2M Knockout and CD47/HLA-E Overexpression.\",\"authors\":\"Cha Yeon Kim, Cholong Jeong, Yeon-Ju Jeong, Young Hoon Sung, Youngjin Han, Changmo Hwang\",\"doi\":\"10.1007/s13770-025-00742-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Induced pluripotent stem cells (iPSCs) represent a promising source for regenerative therapies, yet allogeneic transplantation is limited by immune rejection. While strategies for generating hypoimmune iPSCs have been proposed, their efficacy after differentiation into lineage-specific cell types remains underexplored.</p><p><strong>Methods: </strong>A human iPSC line (36A) from peripheral blood mononuclear cells using a Sendai virus-based reprogramming protocol. Hypoimmune properties were conferred via CRISPR-Cpf1-mediated B2M knockout, combined with lentiviral overexpression of HLA-E and CD47. Immune evasion was validated using NK cell cytotoxicity assays. Endothelial differentiation was induced using a defined, stepwise protocol, and in vivo functionality was evaluated in humanized NSG mice.</p><p><strong>Results: </strong>The hypoimmune iPSCs retained pluripotency, exhibited stable karyotype, and demonstrated > 99% expression of HLA-E/CD47. NK cell-mediated lysis was significantly reduced in edited cells, although IFN-γ levels remained elevated. Upon differentiation, the hypoimmune iPSCs yielded > 98% CD31<sup>+</sup>CD144<sup>+</sup> endothelial cells, which showed enhanced survival in vivo compared to wild-type controls.</p><p><strong>Conclusion: </strong>Multiplex gene editing successfully conferred durable immune evasion in both undifferentiated and endothelial-differentiated iPSCs. These findings support the clinical potential of hypoimmune iPSC-derived cell therapies for allogeneic transplantation without immunosuppression.</p>\",\"PeriodicalId\":23126,\"journal\":{\"name\":\"Tissue engineering and regenerative medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue engineering and regenerative medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13770-025-00742-9\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering and regenerative medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13770-025-00742-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Establishment of Immune-Evasive iPSCs from PBMCs Using B2M Knockout and CD47/HLA-E Overexpression.
Background: Induced pluripotent stem cells (iPSCs) represent a promising source for regenerative therapies, yet allogeneic transplantation is limited by immune rejection. While strategies for generating hypoimmune iPSCs have been proposed, their efficacy after differentiation into lineage-specific cell types remains underexplored.
Methods: A human iPSC line (36A) from peripheral blood mononuclear cells using a Sendai virus-based reprogramming protocol. Hypoimmune properties were conferred via CRISPR-Cpf1-mediated B2M knockout, combined with lentiviral overexpression of HLA-E and CD47. Immune evasion was validated using NK cell cytotoxicity assays. Endothelial differentiation was induced using a defined, stepwise protocol, and in vivo functionality was evaluated in humanized NSG mice.
Results: The hypoimmune iPSCs retained pluripotency, exhibited stable karyotype, and demonstrated > 99% expression of HLA-E/CD47. NK cell-mediated lysis was significantly reduced in edited cells, although IFN-γ levels remained elevated. Upon differentiation, the hypoimmune iPSCs yielded > 98% CD31+CD144+ endothelial cells, which showed enhanced survival in vivo compared to wild-type controls.
Conclusion: Multiplex gene editing successfully conferred durable immune evasion in both undifferentiated and endothelial-differentiated iPSCs. These findings support the clinical potential of hypoimmune iPSC-derived cell therapies for allogeneic transplantation without immunosuppression.
期刊介绍:
Tissue Engineering and Regenerative Medicine (Tissue Eng Regen Med, TERM), the official journal of the Korean Tissue Engineering and Regenerative Medicine Society, is a publication dedicated to providing research- based solutions to issues related to human diseases. This journal publishes articles that report substantial information and original findings on tissue engineering, medical biomaterials, cells therapy, stem cell biology and regenerative medicine.