Priyanka Singh, K Jyothsna Devi, Tousif Khan Nizami, Choudhary Shyam Prakash, Hiren Kumar Thakkar, Syed Abid Hussain, Saurav Mallik
{"title":"利用高度不可感知和鲁棒性的水印技术确保医学图像在IoMT中传输的完整性和安全性。","authors":"Priyanka Singh, K Jyothsna Devi, Tousif Khan Nizami, Choudhary Shyam Prakash, Hiren Kumar Thakkar, Syed Abid Hussain, Saurav Mallik","doi":"10.1038/s41598-025-11023-9","DOIUrl":null,"url":null,"abstract":"<p><p>With the technological revolution, the Internet of medical things (IoMT) has developed to be of immense benefit. In IoMT, medical images and patients' data are widely transmitted through private/public network. An ideal transmission should not jeopardize the security, confidentiality, authenticity, authorization, or integrity of medical data/images. To ensure effective transmission and address the aforementioned issues, this paper proposes a blind region based medical image watermarking approach where a medical image is partitioned into region of interest (ROI) and region of non-interest (RONI). To ensure ROI intergrity, localized tamper detection and recovery bits (LTDRB) are generated. For precise diagnosis, patient's electronic health record (EHR) and LTDRB are embedded in RoNI using hybrid DWT-SVD. No embedding is done in RoI to maintain its integrity and high visual quality. To ensure the security and confidentiality of EHR, a novel encryption scheme using Magic Square technique with low computational cost is proposed . Experimental results demonstrates that the proposed scheme provides high imperceptibility (Avg. PSNR>55 dB, SSIM <math><mo>≈</mo></math> 1 and BER <math><mrow><mo>≈</mo> <mn>0</mn></mrow> </math> ), robustness, security at low computational cost and high accuracy in tamper detection and recovery. A comparative study with some of the latest related research shows that the proposed scheme provides imperceptibility and robustness at par. However, the proposed scheme shows superior performance by providing higher EHR security at low computational cost and higher accuracy in ROI tamper detection and recovery, which other schemes have overlooked.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"26058"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12274549/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ensuring integrity and security of medical image transmission in IoMT using highly imperceptible and robust watermarking approach.\",\"authors\":\"Priyanka Singh, K Jyothsna Devi, Tousif Khan Nizami, Choudhary Shyam Prakash, Hiren Kumar Thakkar, Syed Abid Hussain, Saurav Mallik\",\"doi\":\"10.1038/s41598-025-11023-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the technological revolution, the Internet of medical things (IoMT) has developed to be of immense benefit. In IoMT, medical images and patients' data are widely transmitted through private/public network. An ideal transmission should not jeopardize the security, confidentiality, authenticity, authorization, or integrity of medical data/images. To ensure effective transmission and address the aforementioned issues, this paper proposes a blind region based medical image watermarking approach where a medical image is partitioned into region of interest (ROI) and region of non-interest (RONI). To ensure ROI intergrity, localized tamper detection and recovery bits (LTDRB) are generated. For precise diagnosis, patient's electronic health record (EHR) and LTDRB are embedded in RoNI using hybrid DWT-SVD. No embedding is done in RoI to maintain its integrity and high visual quality. To ensure the security and confidentiality of EHR, a novel encryption scheme using Magic Square technique with low computational cost is proposed . Experimental results demonstrates that the proposed scheme provides high imperceptibility (Avg. PSNR>55 dB, SSIM <math><mo>≈</mo></math> 1 and BER <math><mrow><mo>≈</mo> <mn>0</mn></mrow> </math> ), robustness, security at low computational cost and high accuracy in tamper detection and recovery. A comparative study with some of the latest related research shows that the proposed scheme provides imperceptibility and robustness at par. However, the proposed scheme shows superior performance by providing higher EHR security at low computational cost and higher accuracy in ROI tamper detection and recovery, which other schemes have overlooked.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"26058\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12274549/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-11023-9\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-11023-9","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Ensuring integrity and security of medical image transmission in IoMT using highly imperceptible and robust watermarking approach.
With the technological revolution, the Internet of medical things (IoMT) has developed to be of immense benefit. In IoMT, medical images and patients' data are widely transmitted through private/public network. An ideal transmission should not jeopardize the security, confidentiality, authenticity, authorization, or integrity of medical data/images. To ensure effective transmission and address the aforementioned issues, this paper proposes a blind region based medical image watermarking approach where a medical image is partitioned into region of interest (ROI) and region of non-interest (RONI). To ensure ROI intergrity, localized tamper detection and recovery bits (LTDRB) are generated. For precise diagnosis, patient's electronic health record (EHR) and LTDRB are embedded in RoNI using hybrid DWT-SVD. No embedding is done in RoI to maintain its integrity and high visual quality. To ensure the security and confidentiality of EHR, a novel encryption scheme using Magic Square technique with low computational cost is proposed . Experimental results demonstrates that the proposed scheme provides high imperceptibility (Avg. PSNR>55 dB, SSIM 1 and BER ), robustness, security at low computational cost and high accuracy in tamper detection and recovery. A comparative study with some of the latest related research shows that the proposed scheme provides imperceptibility and robustness at par. However, the proposed scheme shows superior performance by providing higher EHR security at low computational cost and higher accuracy in ROI tamper detection and recovery, which other schemes have overlooked.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.