应用图像引导分析监测粪便微生物组成和多样性的人类队列。

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Konstantina Zafeiropoulou, Bas Voermans, Huy Ngo, Javier Moreno, Donghyeok Lee, Joep P M Derikx, Misha Luyer, Aeilko H Zwinderman, Max Nieuwdorp, Marcus de Goffau, Wouter J de Jonge, Evgeni Levin
{"title":"应用图像引导分析监测粪便微生物组成和多样性的人类队列。","authors":"Konstantina Zafeiropoulou, Bas Voermans, Huy Ngo, Javier Moreno, Donghyeok Lee, Joep P M Derikx, Misha Luyer, Aeilko H Zwinderman, Max Nieuwdorp, Marcus de Goffau, Wouter J de Jonge, Evgeni Levin","doi":"10.1038/s41598-025-10629-3","DOIUrl":null,"url":null,"abstract":"<p><p>The critical role of gut microbiota in human health and disease has been increasingly illustrated over the past decades, with a significant amount of research demonstrating an unmet need for self-monitor of the fecal microbial composition in an easily-accessible, rapid-time manner. In this study, we employed a tool for Smartphone Microbiome Evaluation and Analysis in Rapid-time (SMEAR) that uses images of fecal smears to predict microbial compositional characteristics in a human cohort. A subset of human fecal samples was randomly retrieved from the second wave of data collection in the Healthy Life in an Urban Setting (HELIUS) study cohort. Per sample, 16S rRNA gene sequencing data was generated in addition to an image of a fecal smear, spread on a standard A4 paper. Metagenomics-paired pictures were used to validate a computer vision-based technology to classify whether the sample is of low or high relative abundance of the 50 most abundant genera, and α-diversity (Shannon-index). In total, 888 fecal samples were used as an application of the SMEAR technology. SMEAR gave accurate predictions whether a fecal sample is of low or high relative abundance of Sporobacter, Oscillibacter and Intestinimonas (very good performance, AUC > 0.8, p-value < 0.001, for all models), as well as Neglecta, Megasphaera, Lachnospira, Methanobrevibacter, Harryflintia, Roseburia, and Dialister (good performance, AUC > 0.75, p-value < 0.001, for all models). Likewise, SMEAR could classify whether a fecal sample was of low or high α-diversity (AUC = 0.83, p-value < 0.001). Our study demonstrates that SMEAR robustly predicts microbial composition and diversity from digital images of fecal smears in a human cohort. These findings establish SMEAR as a new benchmark for rapid, cost-effective microbiome diagnostics and pave the way for its direct application in research settings and clinical validation.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"26237"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12276231/pdf/","citationCount":"0","resultStr":"{\"title\":\"Application of image guided analyses to monitor fecal microbial composition and diversity in a human cohort.\",\"authors\":\"Konstantina Zafeiropoulou, Bas Voermans, Huy Ngo, Javier Moreno, Donghyeok Lee, Joep P M Derikx, Misha Luyer, Aeilko H Zwinderman, Max Nieuwdorp, Marcus de Goffau, Wouter J de Jonge, Evgeni Levin\",\"doi\":\"10.1038/s41598-025-10629-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The critical role of gut microbiota in human health and disease has been increasingly illustrated over the past decades, with a significant amount of research demonstrating an unmet need for self-monitor of the fecal microbial composition in an easily-accessible, rapid-time manner. In this study, we employed a tool for Smartphone Microbiome Evaluation and Analysis in Rapid-time (SMEAR) that uses images of fecal smears to predict microbial compositional characteristics in a human cohort. A subset of human fecal samples was randomly retrieved from the second wave of data collection in the Healthy Life in an Urban Setting (HELIUS) study cohort. Per sample, 16S rRNA gene sequencing data was generated in addition to an image of a fecal smear, spread on a standard A4 paper. Metagenomics-paired pictures were used to validate a computer vision-based technology to classify whether the sample is of low or high relative abundance of the 50 most abundant genera, and α-diversity (Shannon-index). In total, 888 fecal samples were used as an application of the SMEAR technology. SMEAR gave accurate predictions whether a fecal sample is of low or high relative abundance of Sporobacter, Oscillibacter and Intestinimonas (very good performance, AUC > 0.8, p-value < 0.001, for all models), as well as Neglecta, Megasphaera, Lachnospira, Methanobrevibacter, Harryflintia, Roseburia, and Dialister (good performance, AUC > 0.75, p-value < 0.001, for all models). Likewise, SMEAR could classify whether a fecal sample was of low or high α-diversity (AUC = 0.83, p-value < 0.001). Our study demonstrates that SMEAR robustly predicts microbial composition and diversity from digital images of fecal smears in a human cohort. These findings establish SMEAR as a new benchmark for rapid, cost-effective microbiome diagnostics and pave the way for its direct application in research settings and clinical validation.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"26237\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12276231/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-10629-3\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-10629-3","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在过去的几十年里,肠道微生物群在人类健康和疾病中的关键作用已经越来越多地被阐明,大量的研究表明,以一种易于获取、快速的方式对粪便微生物组成进行自我监测的需求尚未得到满足。在这项研究中,我们采用了一种智能手机微生物组评估和快速分析(SMEAR)工具,该工具使用粪便涂片图像来预测人类队列中的微生物组成特征。从城市环境中的健康生活(HELIUS)研究队列的第二波数据收集中随机抽取了一部分人类粪便样本。对于每个样本,除了粪便涂片图像外,还生成16S rRNA基因测序数据,并将其铺在标准A4纸上。利用宏基因组配对图片验证了一种基于计算机视觉的技术,该技术可以对样本中最丰富的50个属的相对丰度和α-多样性(Shannon-index)进行低丰度或高丰度的分类。总共使用了888份粪便样本作为涂片技术的应用。SMEAR能准确预测粪便样本中孢子杆菌、振荡杆菌和无肠单胞菌的相对丰度是低还是高(性能非常好,AUC为0.8,p值为0.75,p值为0.75)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of image guided analyses to monitor fecal microbial composition and diversity in a human cohort.

The critical role of gut microbiota in human health and disease has been increasingly illustrated over the past decades, with a significant amount of research demonstrating an unmet need for self-monitor of the fecal microbial composition in an easily-accessible, rapid-time manner. In this study, we employed a tool for Smartphone Microbiome Evaluation and Analysis in Rapid-time (SMEAR) that uses images of fecal smears to predict microbial compositional characteristics in a human cohort. A subset of human fecal samples was randomly retrieved from the second wave of data collection in the Healthy Life in an Urban Setting (HELIUS) study cohort. Per sample, 16S rRNA gene sequencing data was generated in addition to an image of a fecal smear, spread on a standard A4 paper. Metagenomics-paired pictures were used to validate a computer vision-based technology to classify whether the sample is of low or high relative abundance of the 50 most abundant genera, and α-diversity (Shannon-index). In total, 888 fecal samples were used as an application of the SMEAR technology. SMEAR gave accurate predictions whether a fecal sample is of low or high relative abundance of Sporobacter, Oscillibacter and Intestinimonas (very good performance, AUC > 0.8, p-value < 0.001, for all models), as well as Neglecta, Megasphaera, Lachnospira, Methanobrevibacter, Harryflintia, Roseburia, and Dialister (good performance, AUC > 0.75, p-value < 0.001, for all models). Likewise, SMEAR could classify whether a fecal sample was of low or high α-diversity (AUC = 0.83, p-value < 0.001). Our study demonstrates that SMEAR robustly predicts microbial composition and diversity from digital images of fecal smears in a human cohort. These findings establish SMEAR as a new benchmark for rapid, cost-effective microbiome diagnostics and pave the way for its direct application in research settings and clinical validation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信