{"title":"利用尖峰神经网络和卷积尖峰神经网络推进脑电应力检测。","authors":"Aaditya Joshi, Paramveer Singh Matharu, Lokesh Malviya, Manoj Kumar, Akshay Jadhav","doi":"10.1038/s41598-025-10270-0","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate and efficient analysis of Electroencephalogram (EEG) signals is crucial for applications like neurological diagnosis and Brain-Computer Interfaces (BCI). Traditional methods often fall short in capturing the intricate temporal dynamics inherent in EEG data. This paper explores the use of Convolutional Spiking Neural Networks (CSNNs) to enhance EEG signal classification. We apply Discrete Wavelet Transform (DWT) for feature extraction and evaluate CSNN performance on the Physionet EEG dataset, benchmarking it against traditional deep learning and machine learning methods. The findings indicate that CSNNs achieve high accuracy, reaching 98.75% in 10-fold cross-validation, and an impressive F1 score of 98.60%. Notably, this F1-score represents an improvement over previous benchmarks, highlighting the effectiveness of our approach. Along with offering advantages in temporal precision and energy efficiency, CSNNs emerge as a promising solution for next-generation EEG analysis systems.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"26267"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12276335/pdf/","citationCount":"0","resultStr":"{\"title\":\"Advancing EEG based stress detection using spiking neural networks and convolutional spiking neural networks.\",\"authors\":\"Aaditya Joshi, Paramveer Singh Matharu, Lokesh Malviya, Manoj Kumar, Akshay Jadhav\",\"doi\":\"10.1038/s41598-025-10270-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate and efficient analysis of Electroencephalogram (EEG) signals is crucial for applications like neurological diagnosis and Brain-Computer Interfaces (BCI). Traditional methods often fall short in capturing the intricate temporal dynamics inherent in EEG data. This paper explores the use of Convolutional Spiking Neural Networks (CSNNs) to enhance EEG signal classification. We apply Discrete Wavelet Transform (DWT) for feature extraction and evaluate CSNN performance on the Physionet EEG dataset, benchmarking it against traditional deep learning and machine learning methods. The findings indicate that CSNNs achieve high accuracy, reaching 98.75% in 10-fold cross-validation, and an impressive F1 score of 98.60%. Notably, this F1-score represents an improvement over previous benchmarks, highlighting the effectiveness of our approach. Along with offering advantages in temporal precision and energy efficiency, CSNNs emerge as a promising solution for next-generation EEG analysis systems.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"26267\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12276335/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-10270-0\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-10270-0","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Advancing EEG based stress detection using spiking neural networks and convolutional spiking neural networks.
Accurate and efficient analysis of Electroencephalogram (EEG) signals is crucial for applications like neurological diagnosis and Brain-Computer Interfaces (BCI). Traditional methods often fall short in capturing the intricate temporal dynamics inherent in EEG data. This paper explores the use of Convolutional Spiking Neural Networks (CSNNs) to enhance EEG signal classification. We apply Discrete Wavelet Transform (DWT) for feature extraction and evaluate CSNN performance on the Physionet EEG dataset, benchmarking it against traditional deep learning and machine learning methods. The findings indicate that CSNNs achieve high accuracy, reaching 98.75% in 10-fold cross-validation, and an impressive F1 score of 98.60%. Notably, this F1-score represents an improvement over previous benchmarks, highlighting the effectiveness of our approach. Along with offering advantages in temporal precision and energy efficiency, CSNNs emerge as a promising solution for next-generation EEG analysis systems.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.