基于点随机过程的量子生物电化学(QBIOL)软件。

IF 6.2 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Simon Grall, Ignacio Madrid, Aramis Dufour, Helen Sands, Masaki Kato, Akira Fujiwara, Soo Hyeon Kim, Arnaud Chovin, Christophe Demaille, Nicolas Clément
{"title":"基于点随机过程的量子生物电化学(QBIOL)软件。","authors":"Simon Grall, Ignacio Madrid, Aramis Dufour, Helen Sands, Masaki Kato, Akira Fujiwara, Soo Hyeon Kim, Arnaud Chovin, Christophe Demaille, Nicolas Clément","doi":"10.1038/s42004-025-01603-1","DOIUrl":null,"url":null,"abstract":"<p><p>Bioelectrochemistry is crucial for understanding biological functions and driving applications in synthetic biology, healthcare, and catalysis. However, current simulation methods fail to capture both the stochastic nature of molecular motion and electron transfer across the relevant picosecond-to-minute timescales. We present QBIOL, a web-accessible software that integrates molecular dynamics, applied mathematics, GPU programming, and quantum charge transport to address this challenge. QBIOL enables quantitative stochastic electron transfer simulations and has the potential to reproduce numerically any (bio) electrochemical experiments. We illustrate this potential by comparing our simulations with experimental data on the current generated by electrode-attached redox-labeled DNA, or by nanoconfined redox species, in response to a variety of electrical excitation waveforms, configurations of interest in biosensing and catalysis. The adaptable architecture of QBIOL extends to the development of devices for quantum and molecular technologies, positioning our software as a powerful tool for enabling new research in this rapidly evolving field.</p>","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":"8 1","pages":"210"},"PeriodicalIF":6.2000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12276264/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quantum bioelectrochemical (QBIOL) software based on point stochastic processes.\",\"authors\":\"Simon Grall, Ignacio Madrid, Aramis Dufour, Helen Sands, Masaki Kato, Akira Fujiwara, Soo Hyeon Kim, Arnaud Chovin, Christophe Demaille, Nicolas Clément\",\"doi\":\"10.1038/s42004-025-01603-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bioelectrochemistry is crucial for understanding biological functions and driving applications in synthetic biology, healthcare, and catalysis. However, current simulation methods fail to capture both the stochastic nature of molecular motion and electron transfer across the relevant picosecond-to-minute timescales. We present QBIOL, a web-accessible software that integrates molecular dynamics, applied mathematics, GPU programming, and quantum charge transport to address this challenge. QBIOL enables quantitative stochastic electron transfer simulations and has the potential to reproduce numerically any (bio) electrochemical experiments. We illustrate this potential by comparing our simulations with experimental data on the current generated by electrode-attached redox-labeled DNA, or by nanoconfined redox species, in response to a variety of electrical excitation waveforms, configurations of interest in biosensing and catalysis. The adaptable architecture of QBIOL extends to the development of devices for quantum and molecular technologies, positioning our software as a powerful tool for enabling new research in this rapidly evolving field.</p>\",\"PeriodicalId\":10529,\"journal\":{\"name\":\"Communications Chemistry\",\"volume\":\"8 1\",\"pages\":\"210\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12276264/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1038/s42004-025-01603-1\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s42004-025-01603-1","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

生物电化学对于理解生物功能和驱动合成生物学、医疗保健和催化方面的应用至关重要。然而,目前的模拟方法无法捕捉到分子运动和电子转移在相关皮秒到分钟时间尺度上的随机性。我们提出了QBIOL,一个可访问的网络软件,集成了分子动力学,应用数学,GPU编程和量子电荷传输来解决这一挑战。QBIOL能够进行定量随机电子转移模拟,并具有在数值上重现任何(生物)电化学实验的潜力。我们通过比较我们的模拟和实验数据来说明这种潜力,这些数据是由电极附着的氧化还原标记的DNA或纳米限制的氧化还原物质在响应各种电激励波形、生物传感和催化中感兴趣的配置时产生的电流。QBIOL的适应性架构扩展到量子和分子技术设备的开发,将我们的软件定位为在这个快速发展的领域进行新研究的强大工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum bioelectrochemical (QBIOL) software based on point stochastic processes.

Bioelectrochemistry is crucial for understanding biological functions and driving applications in synthetic biology, healthcare, and catalysis. However, current simulation methods fail to capture both the stochastic nature of molecular motion and electron transfer across the relevant picosecond-to-minute timescales. We present QBIOL, a web-accessible software that integrates molecular dynamics, applied mathematics, GPU programming, and quantum charge transport to address this challenge. QBIOL enables quantitative stochastic electron transfer simulations and has the potential to reproduce numerically any (bio) electrochemical experiments. We illustrate this potential by comparing our simulations with experimental data on the current generated by electrode-attached redox-labeled DNA, or by nanoconfined redox species, in response to a variety of electrical excitation waveforms, configurations of interest in biosensing and catalysis. The adaptable architecture of QBIOL extends to the development of devices for quantum and molecular technologies, positioning our software as a powerful tool for enabling new research in this rapidly evolving field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Chemistry
Communications Chemistry Chemistry-General Chemistry
CiteScore
7.70
自引率
1.70%
发文量
146
审稿时长
13 weeks
期刊介绍: Communications Chemistry is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the chemical sciences. Research papers published by the journal represent significant advances bringing new chemical insight to a specialized area of research. We also aim to provide a community forum for issues of importance to all chemists, regardless of sub-discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信