{"title":"精氨酸负载的介孔二氧化硅纳米颗粒改性3d打印纳米复合义齿基托树脂,提高了机械和抗菌性能。","authors":"Zixiang Dai, Jiali An, Xiaofeng Huang","doi":"10.1186/s12903-025-06550-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Three-dimensional (3D) printed denture base resin exhibits limitations including low wear resistance, poor strength, and the lack of antimicrobial property. This study investigated the mechanical and antimicrobial properties of arginine-loaded mesoporous silica nanoparticles (Arg@MSNs) modified 3D-printed denture resin.</p><p><strong>Methods: </strong>Arg@MSNs were synthesized, characterized, and incorporated into resin matrix at 0.5, 1.0, and 2.5 wt%, unmodified resin was served as control. Specimens were fabricated according to test specifications. Surface roughness (Ra), color alteration (ΔE), flexural strength/modulus, hardness and antimicrobial efficacy against Streptococcus mutans and Candida albicans were assessed. Data were evaluated by one-way analysis of variance, followed by the Tukey honestly significant difference post hoc test, with a significance level set at 0.05.</p><p><strong>Results: </strong>Results showed that Arg@MSNs exhibited sustained arginine release and nanoscale morphology. The 2.5 wt% group demonstrated the highest Ra and ΔE value, significantly higher than other groups (p < 0.05). Flexural strength and modulus significantly improved at 0.5 wt% and 1.0 wt% compared to the control (p < 0.05), but decreased at 2.5 wt%. Incorporation of Arg@MSNs at all levels increased hardness, significantly exceeding that of the control (p < 0.05). Antimicrobial performance significantly improved with higher concentrations of Arg@MSNs.</p><p><strong>Conclusions: </strong>The addition of 1.0 wt% Arg@MSNs imparted synergistic enhancements in antimicrobial efficacy and mechanical properties to the 3D-printed nanocomposite, while maintaining clinically acceptable surface roughness and aesthetic performance. These findings demonstrated that Arg@MSNs modified 3D-printed nanocomposite denture base resin, by combining 3D-printed resin with nanotechnology, has promising potential for functionalized dental prostheses.</p>","PeriodicalId":9072,"journal":{"name":"BMC Oral Health","volume":"25 1","pages":"1205"},"PeriodicalIF":2.6000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12276690/pdf/","citationCount":"0","resultStr":"{\"title\":\"Arginine-loaded mesoporous silica nanoparticles modified 3D-printed nanocomposite denture base resin with improved mechanical and antimicrobial properties.\",\"authors\":\"Zixiang Dai, Jiali An, Xiaofeng Huang\",\"doi\":\"10.1186/s12903-025-06550-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Three-dimensional (3D) printed denture base resin exhibits limitations including low wear resistance, poor strength, and the lack of antimicrobial property. This study investigated the mechanical and antimicrobial properties of arginine-loaded mesoporous silica nanoparticles (Arg@MSNs) modified 3D-printed denture resin.</p><p><strong>Methods: </strong>Arg@MSNs were synthesized, characterized, and incorporated into resin matrix at 0.5, 1.0, and 2.5 wt%, unmodified resin was served as control. Specimens were fabricated according to test specifications. Surface roughness (Ra), color alteration (ΔE), flexural strength/modulus, hardness and antimicrobial efficacy against Streptococcus mutans and Candida albicans were assessed. Data were evaluated by one-way analysis of variance, followed by the Tukey honestly significant difference post hoc test, with a significance level set at 0.05.</p><p><strong>Results: </strong>Results showed that Arg@MSNs exhibited sustained arginine release and nanoscale morphology. The 2.5 wt% group demonstrated the highest Ra and ΔE value, significantly higher than other groups (p < 0.05). Flexural strength and modulus significantly improved at 0.5 wt% and 1.0 wt% compared to the control (p < 0.05), but decreased at 2.5 wt%. Incorporation of Arg@MSNs at all levels increased hardness, significantly exceeding that of the control (p < 0.05). Antimicrobial performance significantly improved with higher concentrations of Arg@MSNs.</p><p><strong>Conclusions: </strong>The addition of 1.0 wt% Arg@MSNs imparted synergistic enhancements in antimicrobial efficacy and mechanical properties to the 3D-printed nanocomposite, while maintaining clinically acceptable surface roughness and aesthetic performance. These findings demonstrated that Arg@MSNs modified 3D-printed nanocomposite denture base resin, by combining 3D-printed resin with nanotechnology, has promising potential for functionalized dental prostheses.</p>\",\"PeriodicalId\":9072,\"journal\":{\"name\":\"BMC Oral Health\",\"volume\":\"25 1\",\"pages\":\"1205\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12276690/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Oral Health\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12903-025-06550-w\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Oral Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12903-025-06550-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Arginine-loaded mesoporous silica nanoparticles modified 3D-printed nanocomposite denture base resin with improved mechanical and antimicrobial properties.
Background: Three-dimensional (3D) printed denture base resin exhibits limitations including low wear resistance, poor strength, and the lack of antimicrobial property. This study investigated the mechanical and antimicrobial properties of arginine-loaded mesoporous silica nanoparticles (Arg@MSNs) modified 3D-printed denture resin.
Methods: Arg@MSNs were synthesized, characterized, and incorporated into resin matrix at 0.5, 1.0, and 2.5 wt%, unmodified resin was served as control. Specimens were fabricated according to test specifications. Surface roughness (Ra), color alteration (ΔE), flexural strength/modulus, hardness and antimicrobial efficacy against Streptococcus mutans and Candida albicans were assessed. Data were evaluated by one-way analysis of variance, followed by the Tukey honestly significant difference post hoc test, with a significance level set at 0.05.
Results: Results showed that Arg@MSNs exhibited sustained arginine release and nanoscale morphology. The 2.5 wt% group demonstrated the highest Ra and ΔE value, significantly higher than other groups (p < 0.05). Flexural strength and modulus significantly improved at 0.5 wt% and 1.0 wt% compared to the control (p < 0.05), but decreased at 2.5 wt%. Incorporation of Arg@MSNs at all levels increased hardness, significantly exceeding that of the control (p < 0.05). Antimicrobial performance significantly improved with higher concentrations of Arg@MSNs.
Conclusions: The addition of 1.0 wt% Arg@MSNs imparted synergistic enhancements in antimicrobial efficacy and mechanical properties to the 3D-printed nanocomposite, while maintaining clinically acceptable surface roughness and aesthetic performance. These findings demonstrated that Arg@MSNs modified 3D-printed nanocomposite denture base resin, by combining 3D-printed resin with nanotechnology, has promising potential for functionalized dental prostheses.
期刊介绍:
BMC Oral Health is an open access, peer-reviewed journal that considers articles on all aspects of the prevention, diagnosis and management of disorders of the mouth, teeth and gums, as well as related molecular genetics, pathophysiology, and epidemiology.