{"title":"壳聚糖包被聚乳酸-羟基乙酸纳米胶囊姜黄素对人关节软骨细胞的软骨保护作用","authors":"Yung-Hsin Cheng, Chang-Chin Wu, Yueh-Hsin Chen, Pei-Feng Huang, Che-Wei Hsu, Koichi Kato, Kai-Chiang Yang","doi":"10.1002/jbm.a.37969","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Dysregulation of pro-inflammatory cytokines participates in the initiation and development of knee osteoarthritis (OA). Consequently, interventions to boost the anti-inflammatory capacity of articular chondrocytes have been proposed to treat early-stage OA and prevent OA progression. Applying nanoencapsulation can enhance bioavailability and bioactivity and sustain the anti-inflammatory activity of phytochemicals. Accordingly, in this study, we used nanocapsules to deliver curcumin (Cur) to treat inflammatory chondrocytes. Using double-emulsion technology, Cur was encapsulated in chitosan-coated poly(lactic-co-glycolic acid) nanocapsules. The nanocapsulized Cur (NCcur) was characterized, and the toxicity to human articular chondrocytes was evaluated. NCcur was applied to interleukin-1 beta (IL-1β)-stimulated cells based on findings of the Cur toxicity study. Results showed that the particle size of NCcur was 247.8 ± 1.73 nm with a zeta potential of 20.3 ± 0.11 mV and a mid-range distribution. NCcur showed a core-shell and sphere-like morphology. The encapsulation efficiency of Cur in nanocapsules was 67.1%. Nanoencapsulation decreased the toxicity of high-dose Cur (> 20 μM), and NCcur exhibited a sustained Cur release over 72 h. NCcur supplementation (20 μM) improved cell survival and ameliorated cell senescence of inflammatory chondrocytes. The IL-1β-induced <i>IL1B</i>, <i>IL6</i>, metalloproteinase-9 (<i>MMP9</i>), and <i>MMP13</i> mRNA expressions were down-regulated, while <i>IL10</i> level was enhanced in NCcur-treated chondrocytes. Likewise, NCcur supplementation restored aggrecan, collagen type II alpha 1 chain, and <i>SOX9</i> mRNA expressions. MMP-13, IL-8, and MCP-1 secretions in the supernatant also decreased. By applying nanocapsules, we assumed the anti-inflammatory capacity of Cur could be sustained for treating knee OA.</p>\n </div>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 8","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chondroprotective Effects of Chitosan-Coated Poly(Lactic-co-Glycolic Acid) Nanocapsulized Curcumin on Human Articular Chondrocytes\",\"authors\":\"Yung-Hsin Cheng, Chang-Chin Wu, Yueh-Hsin Chen, Pei-Feng Huang, Che-Wei Hsu, Koichi Kato, Kai-Chiang Yang\",\"doi\":\"10.1002/jbm.a.37969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Dysregulation of pro-inflammatory cytokines participates in the initiation and development of knee osteoarthritis (OA). Consequently, interventions to boost the anti-inflammatory capacity of articular chondrocytes have been proposed to treat early-stage OA and prevent OA progression. Applying nanoencapsulation can enhance bioavailability and bioactivity and sustain the anti-inflammatory activity of phytochemicals. Accordingly, in this study, we used nanocapsules to deliver curcumin (Cur) to treat inflammatory chondrocytes. Using double-emulsion technology, Cur was encapsulated in chitosan-coated poly(lactic-co-glycolic acid) nanocapsules. The nanocapsulized Cur (NCcur) was characterized, and the toxicity to human articular chondrocytes was evaluated. NCcur was applied to interleukin-1 beta (IL-1β)-stimulated cells based on findings of the Cur toxicity study. Results showed that the particle size of NCcur was 247.8 ± 1.73 nm with a zeta potential of 20.3 ± 0.11 mV and a mid-range distribution. NCcur showed a core-shell and sphere-like morphology. The encapsulation efficiency of Cur in nanocapsules was 67.1%. Nanoencapsulation decreased the toxicity of high-dose Cur (> 20 μM), and NCcur exhibited a sustained Cur release over 72 h. NCcur supplementation (20 μM) improved cell survival and ameliorated cell senescence of inflammatory chondrocytes. The IL-1β-induced <i>IL1B</i>, <i>IL6</i>, metalloproteinase-9 (<i>MMP9</i>), and <i>MMP13</i> mRNA expressions were down-regulated, while <i>IL10</i> level was enhanced in NCcur-treated chondrocytes. Likewise, NCcur supplementation restored aggrecan, collagen type II alpha 1 chain, and <i>SOX9</i> mRNA expressions. MMP-13, IL-8, and MCP-1 secretions in the supernatant also decreased. By applying nanocapsules, we assumed the anti-inflammatory capacity of Cur could be sustained for treating knee OA.</p>\\n </div>\",\"PeriodicalId\":15142,\"journal\":{\"name\":\"Journal of biomedical materials research. Part A\",\"volume\":\"113 8\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical materials research. Part A\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37969\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37969","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Chondroprotective Effects of Chitosan-Coated Poly(Lactic-co-Glycolic Acid) Nanocapsulized Curcumin on Human Articular Chondrocytes
Dysregulation of pro-inflammatory cytokines participates in the initiation and development of knee osteoarthritis (OA). Consequently, interventions to boost the anti-inflammatory capacity of articular chondrocytes have been proposed to treat early-stage OA and prevent OA progression. Applying nanoencapsulation can enhance bioavailability and bioactivity and sustain the anti-inflammatory activity of phytochemicals. Accordingly, in this study, we used nanocapsules to deliver curcumin (Cur) to treat inflammatory chondrocytes. Using double-emulsion technology, Cur was encapsulated in chitosan-coated poly(lactic-co-glycolic acid) nanocapsules. The nanocapsulized Cur (NCcur) was characterized, and the toxicity to human articular chondrocytes was evaluated. NCcur was applied to interleukin-1 beta (IL-1β)-stimulated cells based on findings of the Cur toxicity study. Results showed that the particle size of NCcur was 247.8 ± 1.73 nm with a zeta potential of 20.3 ± 0.11 mV and a mid-range distribution. NCcur showed a core-shell and sphere-like morphology. The encapsulation efficiency of Cur in nanocapsules was 67.1%. Nanoencapsulation decreased the toxicity of high-dose Cur (> 20 μM), and NCcur exhibited a sustained Cur release over 72 h. NCcur supplementation (20 μM) improved cell survival and ameliorated cell senescence of inflammatory chondrocytes. The IL-1β-induced IL1B, IL6, metalloproteinase-9 (MMP9), and MMP13 mRNA expressions were down-regulated, while IL10 level was enhanced in NCcur-treated chondrocytes. Likewise, NCcur supplementation restored aggrecan, collagen type II alpha 1 chain, and SOX9 mRNA expressions. MMP-13, IL-8, and MCP-1 secretions in the supernatant also decreased. By applying nanocapsules, we assumed the anti-inflammatory capacity of Cur could be sustained for treating knee OA.
期刊介绍:
The Journal of Biomedical Materials Research Part A is an international, interdisciplinary, English-language publication of original contributions concerning studies of the preparation, performance, and evaluation of biomaterials; the chemical, physical, toxicological, and mechanical behavior of materials in physiological environments; and the response of blood and tissues to biomaterials. The Journal publishes peer-reviewed articles on all relevant biomaterial topics including the science and technology of alloys,polymers, ceramics, and reprocessed animal and human tissues in surgery,dentistry, artificial organs, and other medical devices. The Journal also publishes articles in interdisciplinary areas such as tissue engineering and controlled release technology where biomaterials play a significant role in the performance of the medical device.
The Journal of Biomedical Materials Research is the official journal of the Society for Biomaterials (USA), the Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials.
Articles are welcomed from all scientists. Membership in the Society for Biomaterials is not a prerequisite for submission.