耐甲氧西林金黄色葡萄球菌致敏和治疗的多功能框架核酸载体

IF 13.7 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yicheng Zhao, Jingyi Si, Shisong Jing, Bingmei Wang, Yueshan Xu, Jiyu Guan, Quan Liu, Jianlei Shen, Min Lv, Li Wang, Changfeng Zhu
{"title":"耐甲氧西林金黄色葡萄球菌致敏和治疗的多功能框架核酸载体","authors":"Yicheng Zhao,&nbsp;Jingyi Si,&nbsp;Shisong Jing,&nbsp;Bingmei Wang,&nbsp;Yueshan Xu,&nbsp;Jiyu Guan,&nbsp;Quan Liu,&nbsp;Jianlei Shen,&nbsp;Min Lv,&nbsp;Li Wang,&nbsp;Changfeng Zhu","doi":"10.1002/agt2.70059","DOIUrl":null,"url":null,"abstract":"<p>The increasing prevalence of methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) due to antibiotic misuse necessitates novel therapeutic strategies to counter multidrug-resistant infections. Here, we introduce a self-assembling, aggregation-enhanced tetrahedral DNA nanostructure (tFNA) platform that achieves targeted drug delivery through controlled aggregation and sustained release, effectively restoring MRSA susceptibility to β-lactam antibiotics. These tetrahedral frameworks, termed tFNAs-ASOs-ceftriaxone sodium (TACs), serve as a dual-functional system that co-encapsulates antisense oligonucleotides (ASOs) targeting the <i>mecA</i> gene and the β-lactam antibiotic ceftriaxone sodium (Cef). Aggregation of TACs plays a pivotal role in maximizing drug retention and stability, prolonging the localized release of both ASOs and antibiotics while maintaining high bioavailability at the infection site. Characterization studies, including size distribution, zeta potential, and fluorescence quenching assays, confirm their robust aggregation stability and encapsulation efficiency, ensuring controlled drug kinetics and prolonged therapeutic effects. Upon interaction with bacterial cells, the locally concentrated TACs facilitate efficient ASO-mediated <i>mecA</i> silencing, thereby disrupting PBP2a expression and re-sensitizing MRSA to β-lactams. Simultaneously, the aggregated ceftriaxone sodium reservoir ensures sustained inhibition of bacterial cell wall synthesis, leading to effective bacterial clearance. In addition, TACs display potent antibiofilm activity by penetrating the biofilm matrix and delivering therapeutics directly to the embedded bacterial population, thereby overcoming the diffusion barriers. In vivo, TACs exhibit superior therapeutic efficacy in an MRSA-induced pneumonia mouse model, significantly improving survival rates, reducing bacterial burden, and mitigating lung tissue damage. These findings highlight the transformative potential of tFNAs as an intelligent drug aggregation and release system, offering a novel paradigm for optimizing antibiotic therapy against multidrug-resistant pathogens.</p>","PeriodicalId":72127,"journal":{"name":"Aggregate (Hoboken, N.J.)","volume":"6 7","pages":""},"PeriodicalIF":13.7000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agt2.70059","citationCount":"0","resultStr":"{\"title\":\"Multifunctional Framework Nucleic Acid Vehicle for Antibiotic Sensitization and Treatment of Methicillin-Resistant Staphylococcus aureus\",\"authors\":\"Yicheng Zhao,&nbsp;Jingyi Si,&nbsp;Shisong Jing,&nbsp;Bingmei Wang,&nbsp;Yueshan Xu,&nbsp;Jiyu Guan,&nbsp;Quan Liu,&nbsp;Jianlei Shen,&nbsp;Min Lv,&nbsp;Li Wang,&nbsp;Changfeng Zhu\",\"doi\":\"10.1002/agt2.70059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The increasing prevalence of methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) due to antibiotic misuse necessitates novel therapeutic strategies to counter multidrug-resistant infections. Here, we introduce a self-assembling, aggregation-enhanced tetrahedral DNA nanostructure (tFNA) platform that achieves targeted drug delivery through controlled aggregation and sustained release, effectively restoring MRSA susceptibility to β-lactam antibiotics. These tetrahedral frameworks, termed tFNAs-ASOs-ceftriaxone sodium (TACs), serve as a dual-functional system that co-encapsulates antisense oligonucleotides (ASOs) targeting the <i>mecA</i> gene and the β-lactam antibiotic ceftriaxone sodium (Cef). Aggregation of TACs plays a pivotal role in maximizing drug retention and stability, prolonging the localized release of both ASOs and antibiotics while maintaining high bioavailability at the infection site. Characterization studies, including size distribution, zeta potential, and fluorescence quenching assays, confirm their robust aggregation stability and encapsulation efficiency, ensuring controlled drug kinetics and prolonged therapeutic effects. Upon interaction with bacterial cells, the locally concentrated TACs facilitate efficient ASO-mediated <i>mecA</i> silencing, thereby disrupting PBP2a expression and re-sensitizing MRSA to β-lactams. Simultaneously, the aggregated ceftriaxone sodium reservoir ensures sustained inhibition of bacterial cell wall synthesis, leading to effective bacterial clearance. In addition, TACs display potent antibiofilm activity by penetrating the biofilm matrix and delivering therapeutics directly to the embedded bacterial population, thereby overcoming the diffusion barriers. In vivo, TACs exhibit superior therapeutic efficacy in an MRSA-induced pneumonia mouse model, significantly improving survival rates, reducing bacterial burden, and mitigating lung tissue damage. These findings highlight the transformative potential of tFNAs as an intelligent drug aggregation and release system, offering a novel paradigm for optimizing antibiotic therapy against multidrug-resistant pathogens.</p>\",\"PeriodicalId\":72127,\"journal\":{\"name\":\"Aggregate (Hoboken, N.J.)\",\"volume\":\"6 7\",\"pages\":\"\"},\"PeriodicalIF\":13.7000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agt2.70059\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aggregate (Hoboken, N.J.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/agt2.70059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aggregate (Hoboken, N.J.)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/agt2.70059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于抗生素滥用,耐甲氧西林金黄色葡萄球菌(MRSA)的患病率不断上升,需要新的治疗策略来对抗多重耐药感染。在这里,我们介绍了一种自组装、聚集增强的四面体DNA纳米结构(tFNA)平台,该平台通过控制聚集和缓释实现靶向给药,有效地恢复MRSA对β-内酰胺类抗生素的敏感性。这些四面体框架,被称为tnas -ASOs-头孢曲松钠(TACs),作为一个双功能系统,共同封装靶向mecA基因的反义寡核苷酸(ASOs)和β-内酰胺类抗生素头孢曲松钠(Cef)。TACs的聚集在最大化药物保留和稳定性,延长ASOs和抗生素的局部释放,同时保持感染部位的高生物利用度方面起着关键作用。表征研究,包括大小分布、zeta电位和荧光猝灭分析,证实了它们强大的聚集稳定性和包封效率,确保了药物动力学控制和延长的治疗效果。在与细菌细胞相互作用后,局部浓缩的TACs促进了aso介导的高效mecA沉默,从而破坏了PBP2a的表达,使MRSA对β-内酰胺重新敏感。同时,聚集的头孢曲松钠库确保持续抑制细菌细胞壁合成,导致有效的细菌清除。此外,tac通过穿透生物膜基质并将治疗药物直接传递给嵌入的细菌群体,从而克服扩散障碍,显示出强大的抗生物膜活性。在体内,TACs在mrsa诱导的肺炎小鼠模型中表现出优越的治疗效果,显著提高生存率,减少细菌负担,减轻肺组织损伤。这些发现突出了tFNAs作为一种智能药物聚集和释放系统的变革潜力,为优化针对多药耐药病原体的抗生素治疗提供了新的范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multifunctional Framework Nucleic Acid Vehicle for Antibiotic Sensitization and Treatment of Methicillin-Resistant Staphylococcus aureus

Multifunctional Framework Nucleic Acid Vehicle for Antibiotic Sensitization and Treatment of Methicillin-Resistant Staphylococcus aureus

The increasing prevalence of methicillin-resistant Staphylococcus aureus (MRSA) due to antibiotic misuse necessitates novel therapeutic strategies to counter multidrug-resistant infections. Here, we introduce a self-assembling, aggregation-enhanced tetrahedral DNA nanostructure (tFNA) platform that achieves targeted drug delivery through controlled aggregation and sustained release, effectively restoring MRSA susceptibility to β-lactam antibiotics. These tetrahedral frameworks, termed tFNAs-ASOs-ceftriaxone sodium (TACs), serve as a dual-functional system that co-encapsulates antisense oligonucleotides (ASOs) targeting the mecA gene and the β-lactam antibiotic ceftriaxone sodium (Cef). Aggregation of TACs plays a pivotal role in maximizing drug retention and stability, prolonging the localized release of both ASOs and antibiotics while maintaining high bioavailability at the infection site. Characterization studies, including size distribution, zeta potential, and fluorescence quenching assays, confirm their robust aggregation stability and encapsulation efficiency, ensuring controlled drug kinetics and prolonged therapeutic effects. Upon interaction with bacterial cells, the locally concentrated TACs facilitate efficient ASO-mediated mecA silencing, thereby disrupting PBP2a expression and re-sensitizing MRSA to β-lactams. Simultaneously, the aggregated ceftriaxone sodium reservoir ensures sustained inhibition of bacterial cell wall synthesis, leading to effective bacterial clearance. In addition, TACs display potent antibiofilm activity by penetrating the biofilm matrix and delivering therapeutics directly to the embedded bacterial population, thereby overcoming the diffusion barriers. In vivo, TACs exhibit superior therapeutic efficacy in an MRSA-induced pneumonia mouse model, significantly improving survival rates, reducing bacterial burden, and mitigating lung tissue damage. These findings highlight the transformative potential of tFNAs as an intelligent drug aggregation and release system, offering a novel paradigm for optimizing antibiotic therapy against multidrug-resistant pathogens.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.40
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信