关于闭球和闭球的一维多项式、正则和正则象

IF 1.2 2区 数学 Q1 MATHEMATICS
José F. Fernando
{"title":"关于闭球和闭球的一维多项式、正则和正则象","authors":"José F. Fernando","doi":"10.1112/jlms.70241","DOIUrl":null,"url":null,"abstract":"<p>We present a full geometric characterization of the one-dimensional (semialgebraic) images <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math> of either <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>-dimensional closed balls <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mover>\n <mi>B</mi>\n <mo>¯</mo>\n </mover>\n <mi>n</mi>\n </msub>\n <mo>⊂</mo>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n </mrow>\n <annotation>$\\overline{{\\mathcal {B}}}_n\\subset {\\mathbb {R}}^n$</annotation>\n </semantics></math> or <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>-dimensional spheres <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>S</mi>\n <mi>n</mi>\n </msup>\n <mo>⊂</mo>\n <msup>\n <mi>R</mi>\n <mrow>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>${\\mathbb {S}}^n\\subset {\\mathbb {R}}^{n+1}$</annotation>\n </semantics></math> under polynomial, regular, and regulous maps for some <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>⩾</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$n\\geqslant 1$</annotation>\n </semantics></math>. In all the previous cases, one can find a new polynomial, regular, or regulous map with domain either <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mover>\n <mi>B</mi>\n <mo>¯</mo>\n </mover>\n <mn>1</mn>\n </msub>\n <mo>:</mo>\n <mo>=</mo>\n <mrow>\n <mo>[</mo>\n <mo>−</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>]</mo>\n </mrow>\n </mrow>\n <annotation>$\\overline{{\\mathcal {B}}}_1:=[-1,1]$</annotation>\n </semantics></math> or <span></span><math>\n <semantics>\n <msup>\n <mi>S</mi>\n <mn>1</mn>\n </msup>\n <annotation>${\\mathbb {S}}^1$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math> is the image under such map of either <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mover>\n <mi>B</mi>\n <mo>¯</mo>\n </mover>\n <mn>1</mn>\n </msub>\n <mo>:</mo>\n <mo>=</mo>\n <mrow>\n <mo>[</mo>\n <mo>−</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>]</mo>\n </mrow>\n </mrow>\n <annotation>$\\overline{{\\mathcal {B}}}_1:=[-1,1]$</annotation>\n </semantics></math> or <span></span><math>\n <semantics>\n <msup>\n <mi>S</mi>\n <mn>1</mn>\n </msup>\n <annotation>${\\mathbb {S}}^1$</annotation>\n </semantics></math>. As a by-product, we provide a full characterization of the images of <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>S</mi>\n <mn>1</mn>\n </msup>\n <mo>⊂</mo>\n <mi>C</mi>\n <mo>≡</mo>\n <msup>\n <mi>R</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>${\\mathbb {S}}^1\\subset {\\mathbb {C}}\\equiv {\\mathbb {R}}^2$</annotation>\n </semantics></math> under Laurent polynomials <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>∈</mo>\n <mi>C</mi>\n <mo>[</mo>\n <mi>z</mi>\n <mo>,</mo>\n <msup>\n <mi>z</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mo>]</mo>\n </mrow>\n <annotation>$f\\in {\\mathbb {C}}[{\\tt z},{\\tt z}^{-1}]$</annotation>\n </semantics></math>, taking advantage of some previous works of Kovalev-Yang and Wilmshurst. We also alternatively prove that all polynomial maps <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>S</mi>\n <mi>k</mi>\n </msup>\n <mo>→</mo>\n <msup>\n <mi>S</mi>\n <mn>1</mn>\n </msup>\n </mrow>\n <annotation>${\\mathbb {S}}^k\\rightarrow {\\mathbb {S}}^1$</annotation>\n </semantics></math> are constant if <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>⩾</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$k\\geqslant 2$</annotation>\n </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70241","citationCount":"0","resultStr":"{\"title\":\"On the one-dimensional polynomial, regular, and regulous images of closed balls and spheres\",\"authors\":\"José F. Fernando\",\"doi\":\"10.1112/jlms.70241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present a full geometric characterization of the one-dimensional (semialgebraic) images <span></span><math>\\n <semantics>\\n <mi>S</mi>\\n <annotation>$S$</annotation>\\n </semantics></math> of either <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math>-dimensional closed balls <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mover>\\n <mi>B</mi>\\n <mo>¯</mo>\\n </mover>\\n <mi>n</mi>\\n </msub>\\n <mo>⊂</mo>\\n <msup>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msup>\\n </mrow>\\n <annotation>$\\\\overline{{\\\\mathcal {B}}}_n\\\\subset {\\\\mathbb {R}}^n$</annotation>\\n </semantics></math> or <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math>-dimensional spheres <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>S</mi>\\n <mi>n</mi>\\n </msup>\\n <mo>⊂</mo>\\n <msup>\\n <mi>R</mi>\\n <mrow>\\n <mi>n</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>${\\\\mathbb {S}}^n\\\\subset {\\\\mathbb {R}}^{n+1}$</annotation>\\n </semantics></math> under polynomial, regular, and regulous maps for some <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>⩾</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$n\\\\geqslant 1$</annotation>\\n </semantics></math>. In all the previous cases, one can find a new polynomial, regular, or regulous map with domain either <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mover>\\n <mi>B</mi>\\n <mo>¯</mo>\\n </mover>\\n <mn>1</mn>\\n </msub>\\n <mo>:</mo>\\n <mo>=</mo>\\n <mrow>\\n <mo>[</mo>\\n <mo>−</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mn>1</mn>\\n <mo>]</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\overline{{\\\\mathcal {B}}}_1:=[-1,1]$</annotation>\\n </semantics></math> or <span></span><math>\\n <semantics>\\n <msup>\\n <mi>S</mi>\\n <mn>1</mn>\\n </msup>\\n <annotation>${\\\\mathbb {S}}^1$</annotation>\\n </semantics></math> such that <span></span><math>\\n <semantics>\\n <mi>S</mi>\\n <annotation>$S$</annotation>\\n </semantics></math> is the image under such map of either <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mover>\\n <mi>B</mi>\\n <mo>¯</mo>\\n </mover>\\n <mn>1</mn>\\n </msub>\\n <mo>:</mo>\\n <mo>=</mo>\\n <mrow>\\n <mo>[</mo>\\n <mo>−</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mn>1</mn>\\n <mo>]</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\overline{{\\\\mathcal {B}}}_1:=[-1,1]$</annotation>\\n </semantics></math> or <span></span><math>\\n <semantics>\\n <msup>\\n <mi>S</mi>\\n <mn>1</mn>\\n </msup>\\n <annotation>${\\\\mathbb {S}}^1$</annotation>\\n </semantics></math>. As a by-product, we provide a full characterization of the images of <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>S</mi>\\n <mn>1</mn>\\n </msup>\\n <mo>⊂</mo>\\n <mi>C</mi>\\n <mo>≡</mo>\\n <msup>\\n <mi>R</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>${\\\\mathbb {S}}^1\\\\subset {\\\\mathbb {C}}\\\\equiv {\\\\mathbb {R}}^2$</annotation>\\n </semantics></math> under Laurent polynomials <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>∈</mo>\\n <mi>C</mi>\\n <mo>[</mo>\\n <mi>z</mi>\\n <mo>,</mo>\\n <msup>\\n <mi>z</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <mo>]</mo>\\n </mrow>\\n <annotation>$f\\\\in {\\\\mathbb {C}}[{\\\\tt z},{\\\\tt z}^{-1}]$</annotation>\\n </semantics></math>, taking advantage of some previous works of Kovalev-Yang and Wilmshurst. We also alternatively prove that all polynomial maps <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>S</mi>\\n <mi>k</mi>\\n </msup>\\n <mo>→</mo>\\n <msup>\\n <mi>S</mi>\\n <mn>1</mn>\\n </msup>\\n </mrow>\\n <annotation>${\\\\mathbb {S}}^k\\\\rightarrow {\\\\mathbb {S}}^1$</annotation>\\n </semantics></math> are constant if <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>⩾</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$k\\\\geqslant 2$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"112 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70241\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70241\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70241","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们给出了任意n个$n$维封闭球B¯n的一维(半代数)图像S $S$的完整几何表征R n $\overline{{\mathcal {B}}}_n\subset {\mathbb {R}}^n$或n $n$维球面S n∧RN + 1 ${\mathbb {S}}^n\subset {\mathbb {R}}^{n+1}$在多项式,规则和规则映射下为一些N或1 $n\geqslant 1$。在前面的所有情况下,我们都可以找到一个新的多项式、正则或正则映射,其域为B¯1:=[−1];1] $\overline{{\mathcal {B}}}_1:=[-1,1]$或s1 ${\mathbb {S}}^1$,使得S $S$是其中任何一个的地图下的图像B¯1:=[−1,1]$\overline{{\mathcal {B}}}_1:=[-1,1]$或s1 ${\mathbb {S}}^1$。作为副产品,我们提供了s1∧C≡r2 ${\mathbb {S}}^1\subset {\mathbb {C}}\equiv {\mathbb {R}}^2$在洛朗多项式f下的图像的完整表征∈C [z, z−1]$f\in {\mathbb {C}}[{\tt z},{\tt z}^{-1}]$,利用Kovalev-Yang和Wilmshurst之前的一些工作。我们还交替地证明如果k大于或等于2,所有多项式映射S k→S 1 ${\mathbb {S}}^k\rightarrow {\mathbb {S}}^1$都是常数$k\geqslant 2$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the one-dimensional polynomial, regular, and regulous images of closed balls and spheres

On the one-dimensional polynomial, regular, and regulous images of closed balls and spheres

On the one-dimensional polynomial, regular, and regulous images of closed balls and spheres

On the one-dimensional polynomial, regular, and regulous images of closed balls and spheres

On the one-dimensional polynomial, regular, and regulous images of closed balls and spheres

We present a full geometric characterization of the one-dimensional (semialgebraic) images S $S$ of either n $n$ -dimensional closed balls B ¯ n R n $\overline{{\mathcal {B}}}_n\subset {\mathbb {R}}^n$ or n $n$ -dimensional spheres S n R n + 1 ${\mathbb {S}}^n\subset {\mathbb {R}}^{n+1}$ under polynomial, regular, and regulous maps for some n 1 $n\geqslant 1$ . In all the previous cases, one can find a new polynomial, regular, or regulous map with domain either B ¯ 1 : = [ 1 , 1 ] $\overline{{\mathcal {B}}}_1:=[-1,1]$ or S 1 ${\mathbb {S}}^1$ such that S $S$ is the image under such map of either B ¯ 1 : = [ 1 , 1 ] $\overline{{\mathcal {B}}}_1:=[-1,1]$ or S 1 ${\mathbb {S}}^1$ . As a by-product, we provide a full characterization of the images of S 1 C R 2 ${\mathbb {S}}^1\subset {\mathbb {C}}\equiv {\mathbb {R}}^2$ under Laurent polynomials f C [ z , z 1 ] $f\in {\mathbb {C}}[{\tt z},{\tt z}^{-1}]$ , taking advantage of some previous works of Kovalev-Yang and Wilmshurst. We also alternatively prove that all polynomial maps S k S 1 ${\mathbb {S}}^k\rightarrow {\mathbb {S}}^1$ are constant if k 2 $k\geqslant 2$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信