José F. Fernando
下载PDF
{"title":"关于闭球和闭球的一维多项式、正则和正则象","authors":"José F. Fernando","doi":"10.1112/jlms.70241","DOIUrl":null,"url":null,"abstract":"<p>We present a full geometric characterization of the one-dimensional (semialgebraic) images <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math> of either <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>-dimensional closed balls <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mover>\n <mi>B</mi>\n <mo>¯</mo>\n </mover>\n <mi>n</mi>\n </msub>\n <mo>⊂</mo>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n </mrow>\n <annotation>$\\overline{{\\mathcal {B}}}_n\\subset {\\mathbb {R}}^n$</annotation>\n </semantics></math> or <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>-dimensional spheres <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>S</mi>\n <mi>n</mi>\n </msup>\n <mo>⊂</mo>\n <msup>\n <mi>R</mi>\n <mrow>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>${\\mathbb {S}}^n\\subset {\\mathbb {R}}^{n+1}$</annotation>\n </semantics></math> under polynomial, regular, and regulous maps for some <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>⩾</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$n\\geqslant 1$</annotation>\n </semantics></math>. In all the previous cases, one can find a new polynomial, regular, or regulous map with domain either <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mover>\n <mi>B</mi>\n <mo>¯</mo>\n </mover>\n <mn>1</mn>\n </msub>\n <mo>:</mo>\n <mo>=</mo>\n <mrow>\n <mo>[</mo>\n <mo>−</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>]</mo>\n </mrow>\n </mrow>\n <annotation>$\\overline{{\\mathcal {B}}}_1:=[-1,1]$</annotation>\n </semantics></math> or <span></span><math>\n <semantics>\n <msup>\n <mi>S</mi>\n <mn>1</mn>\n </msup>\n <annotation>${\\mathbb {S}}^1$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math> is the image under such map of either <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mover>\n <mi>B</mi>\n <mo>¯</mo>\n </mover>\n <mn>1</mn>\n </msub>\n <mo>:</mo>\n <mo>=</mo>\n <mrow>\n <mo>[</mo>\n <mo>−</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>]</mo>\n </mrow>\n </mrow>\n <annotation>$\\overline{{\\mathcal {B}}}_1:=[-1,1]$</annotation>\n </semantics></math> or <span></span><math>\n <semantics>\n <msup>\n <mi>S</mi>\n <mn>1</mn>\n </msup>\n <annotation>${\\mathbb {S}}^1$</annotation>\n </semantics></math>. As a by-product, we provide a full characterization of the images of <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>S</mi>\n <mn>1</mn>\n </msup>\n <mo>⊂</mo>\n <mi>C</mi>\n <mo>≡</mo>\n <msup>\n <mi>R</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>${\\mathbb {S}}^1\\subset {\\mathbb {C}}\\equiv {\\mathbb {R}}^2$</annotation>\n </semantics></math> under Laurent polynomials <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>∈</mo>\n <mi>C</mi>\n <mo>[</mo>\n <mi>z</mi>\n <mo>,</mo>\n <msup>\n <mi>z</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mo>]</mo>\n </mrow>\n <annotation>$f\\in {\\mathbb {C}}[{\\tt z},{\\tt z}^{-1}]$</annotation>\n </semantics></math>, taking advantage of some previous works of Kovalev-Yang and Wilmshurst. We also alternatively prove that all polynomial maps <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>S</mi>\n <mi>k</mi>\n </msup>\n <mo>→</mo>\n <msup>\n <mi>S</mi>\n <mn>1</mn>\n </msup>\n </mrow>\n <annotation>${\\mathbb {S}}^k\\rightarrow {\\mathbb {S}}^1$</annotation>\n </semantics></math> are constant if <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>⩾</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$k\\geqslant 2$</annotation>\n </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70241","citationCount":"0","resultStr":"{\"title\":\"On the one-dimensional polynomial, regular, and regulous images of closed balls and spheres\",\"authors\":\"José F. Fernando\",\"doi\":\"10.1112/jlms.70241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present a full geometric characterization of the one-dimensional (semialgebraic) images <span></span><math>\\n <semantics>\\n <mi>S</mi>\\n <annotation>$S$</annotation>\\n </semantics></math> of either <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math>-dimensional closed balls <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mover>\\n <mi>B</mi>\\n <mo>¯</mo>\\n </mover>\\n <mi>n</mi>\\n </msub>\\n <mo>⊂</mo>\\n <msup>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msup>\\n </mrow>\\n <annotation>$\\\\overline{{\\\\mathcal {B}}}_n\\\\subset {\\\\mathbb {R}}^n$</annotation>\\n </semantics></math> or <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math>-dimensional spheres <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>S</mi>\\n <mi>n</mi>\\n </msup>\\n <mo>⊂</mo>\\n <msup>\\n <mi>R</mi>\\n <mrow>\\n <mi>n</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>${\\\\mathbb {S}}^n\\\\subset {\\\\mathbb {R}}^{n+1}$</annotation>\\n </semantics></math> under polynomial, regular, and regulous maps for some <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>⩾</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$n\\\\geqslant 1$</annotation>\\n </semantics></math>. In all the previous cases, one can find a new polynomial, regular, or regulous map with domain either <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mover>\\n <mi>B</mi>\\n <mo>¯</mo>\\n </mover>\\n <mn>1</mn>\\n </msub>\\n <mo>:</mo>\\n <mo>=</mo>\\n <mrow>\\n <mo>[</mo>\\n <mo>−</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mn>1</mn>\\n <mo>]</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\overline{{\\\\mathcal {B}}}_1:=[-1,1]$</annotation>\\n </semantics></math> or <span></span><math>\\n <semantics>\\n <msup>\\n <mi>S</mi>\\n <mn>1</mn>\\n </msup>\\n <annotation>${\\\\mathbb {S}}^1$</annotation>\\n </semantics></math> such that <span></span><math>\\n <semantics>\\n <mi>S</mi>\\n <annotation>$S$</annotation>\\n </semantics></math> is the image under such map of either <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mover>\\n <mi>B</mi>\\n <mo>¯</mo>\\n </mover>\\n <mn>1</mn>\\n </msub>\\n <mo>:</mo>\\n <mo>=</mo>\\n <mrow>\\n <mo>[</mo>\\n <mo>−</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mn>1</mn>\\n <mo>]</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\overline{{\\\\mathcal {B}}}_1:=[-1,1]$</annotation>\\n </semantics></math> or <span></span><math>\\n <semantics>\\n <msup>\\n <mi>S</mi>\\n <mn>1</mn>\\n </msup>\\n <annotation>${\\\\mathbb {S}}^1$</annotation>\\n </semantics></math>. As a by-product, we provide a full characterization of the images of <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>S</mi>\\n <mn>1</mn>\\n </msup>\\n <mo>⊂</mo>\\n <mi>C</mi>\\n <mo>≡</mo>\\n <msup>\\n <mi>R</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>${\\\\mathbb {S}}^1\\\\subset {\\\\mathbb {C}}\\\\equiv {\\\\mathbb {R}}^2$</annotation>\\n </semantics></math> under Laurent polynomials <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>∈</mo>\\n <mi>C</mi>\\n <mo>[</mo>\\n <mi>z</mi>\\n <mo>,</mo>\\n <msup>\\n <mi>z</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <mo>]</mo>\\n </mrow>\\n <annotation>$f\\\\in {\\\\mathbb {C}}[{\\\\tt z},{\\\\tt z}^{-1}]$</annotation>\\n </semantics></math>, taking advantage of some previous works of Kovalev-Yang and Wilmshurst. We also alternatively prove that all polynomial maps <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>S</mi>\\n <mi>k</mi>\\n </msup>\\n <mo>→</mo>\\n <msup>\\n <mi>S</mi>\\n <mn>1</mn>\\n </msup>\\n </mrow>\\n <annotation>${\\\\mathbb {S}}^k\\\\rightarrow {\\\\mathbb {S}}^1$</annotation>\\n </semantics></math> are constant if <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>⩾</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$k\\\\geqslant 2$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"112 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70241\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70241\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70241","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用