具有基质约束簇的多响应色可调磷光

IF 13.9 Q1 CHEMISTRY, MULTIDISCIPLINARY
Lihui Hou, Ting Wang, Siufung Yu, Xuhui Xu, Xue Yu
{"title":"具有基质约束簇的多响应色可调磷光","authors":"Lihui Hou,&nbsp;Ting Wang,&nbsp;Siufung Yu,&nbsp;Xuhui Xu,&nbsp;Xue Yu","doi":"10.1002/agt2.70071","DOIUrl":null,"url":null,"abstract":"<p>Ultralong organic phosphorescence (UOP) materials have garnered significant interest for applications in advanced optical recording and information encryption. However, it remains a formidable challenge achieving manipulated phosphorescence due to the limited color channels and poorly populated triplet energy levels. Herein, we report a novel multiresponsive organic phosphorescence material, in which the phosphorescence color can be dynamically tuned with stimuli such as radiation duration, concentration, excitation wavelength, time, and temperature. The material is based on the confined 7H-benzo[c]carbazole (BCz) molecules in the polymer matrix, which is achieved through the size-dependent cluster-triggered emission (CTE) mechanism. The BCz molecules form isolated molecules and different-sized clusters in the matrix, resulting in multiple luminescent centers with different energy levels and phosphorescence lifetimes. Through matrix confinement effects, the activation states of the monomers and multiple clusters could be precisely modulated, resulting in temperature-controlled tunable orange-to-green variations. Furthermore, the multiresponsive properties of the material have been used in both civil and military applications through sophisticated mathematical modeling. This work potentially proposes a guiding strategy for the development of multiresponsive UOP materials based on CTE molecules.</p>","PeriodicalId":72127,"journal":{"name":"Aggregate (Hoboken, N.J.)","volume":"6 7","pages":""},"PeriodicalIF":13.9000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agt2.70071","citationCount":"0","resultStr":"{\"title\":\"Multiresponsive Color-Tunable Phosphorescence With Matrix-Confined Clusters\",\"authors\":\"Lihui Hou,&nbsp;Ting Wang,&nbsp;Siufung Yu,&nbsp;Xuhui Xu,&nbsp;Xue Yu\",\"doi\":\"10.1002/agt2.70071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ultralong organic phosphorescence (UOP) materials have garnered significant interest for applications in advanced optical recording and information encryption. However, it remains a formidable challenge achieving manipulated phosphorescence due to the limited color channels and poorly populated triplet energy levels. Herein, we report a novel multiresponsive organic phosphorescence material, in which the phosphorescence color can be dynamically tuned with stimuli such as radiation duration, concentration, excitation wavelength, time, and temperature. The material is based on the confined 7H-benzo[c]carbazole (BCz) molecules in the polymer matrix, which is achieved through the size-dependent cluster-triggered emission (CTE) mechanism. The BCz molecules form isolated molecules and different-sized clusters in the matrix, resulting in multiple luminescent centers with different energy levels and phosphorescence lifetimes. Through matrix confinement effects, the activation states of the monomers and multiple clusters could be precisely modulated, resulting in temperature-controlled tunable orange-to-green variations. Furthermore, the multiresponsive properties of the material have been used in both civil and military applications through sophisticated mathematical modeling. This work potentially proposes a guiding strategy for the development of multiresponsive UOP materials based on CTE molecules.</p>\",\"PeriodicalId\":72127,\"journal\":{\"name\":\"Aggregate (Hoboken, N.J.)\",\"volume\":\"6 7\",\"pages\":\"\"},\"PeriodicalIF\":13.9000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agt2.70071\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aggregate (Hoboken, N.J.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/agt2.70071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aggregate (Hoboken, N.J.)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/agt2.70071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

超长有机磷光(UOP)材料在先进的光学记录和信息加密方面的应用引起了人们的极大兴趣。然而,由于有限的颜色通道和较少的三重态能级,实现可操纵的磷光仍然是一个艰巨的挑战。在此,我们报道了一种新型的多响应有机磷光材料,其中的磷光颜色可以随着辐射持续时间、浓度、激发波长、时间和温度等刺激而动态调节。该材料是基于聚合物基体中的受限7h -苯并[c]咔唑(BCz)分子,这是通过尺寸依赖的簇触发发射(CTE)机制实现的。BCz分子在基质中形成孤立的分子和不同大小的团簇,形成多个具有不同能级和磷光寿命的发光中心。通过基质约束效应,单体和多个团簇的激活状态可以被精确地调节,从而产生温度可控的可调橙色到绿色的变化。此外,通过复杂的数学建模,该材料的多响应特性已用于民用和军事应用。这项工作可能为开发基于CTE分子的多响应UOP材料提供指导策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multiresponsive Color-Tunable Phosphorescence With Matrix-Confined Clusters

Multiresponsive Color-Tunable Phosphorescence With Matrix-Confined Clusters

Ultralong organic phosphorescence (UOP) materials have garnered significant interest for applications in advanced optical recording and information encryption. However, it remains a formidable challenge achieving manipulated phosphorescence due to the limited color channels and poorly populated triplet energy levels. Herein, we report a novel multiresponsive organic phosphorescence material, in which the phosphorescence color can be dynamically tuned with stimuli such as radiation duration, concentration, excitation wavelength, time, and temperature. The material is based on the confined 7H-benzo[c]carbazole (BCz) molecules in the polymer matrix, which is achieved through the size-dependent cluster-triggered emission (CTE) mechanism. The BCz molecules form isolated molecules and different-sized clusters in the matrix, resulting in multiple luminescent centers with different energy levels and phosphorescence lifetimes. Through matrix confinement effects, the activation states of the monomers and multiple clusters could be precisely modulated, resulting in temperature-controlled tunable orange-to-green variations. Furthermore, the multiresponsive properties of the material have been used in both civil and military applications through sophisticated mathematical modeling. This work potentially proposes a guiding strategy for the development of multiresponsive UOP materials based on CTE molecules.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.40
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信