{"title":"铕配合物功能化气相二氧化硅及其相应的pmma掺杂复合材料的合成、表征和光物理性质","authors":"Qiuping Li, Hongxia Ouyang, Xinghui Yang, Qi Wang, Yonghong Ding, Haichao Yu and Zhi Rao","doi":"10.1039/D5RA03377B","DOIUrl":null,"url":null,"abstract":"<p >Lanthanide organic–inorganic hybrid fluorescent materials are considered as promising candidates for next-generation lighting materials due to their unique optical properties and potential applications. In this work, commercialized silica materials (fumed silica) were selected as the carrier. By means of the bridging function of silane coupling agents, Eu(TTA)<small><sub>3</sub></small>(Phen) was covalently grafted onto the surface of fumed silica to synthesize lanthanide hybrid phosphors. Subsequently, the phosphor was dispersed into the MMA polymerization system, and a monolithic fluorescent organic glass was fabricated <em>via in situ</em> polymerization. Both the obtained europium hybrid phosphor and the europium complex-doped organic glass exhibited intense red fluorescence under UV light and possessed the characteristics of broad absorption, narrow emission, and long fluorescence lifetime. The design and synthesis process is straightforward and cost-effective, making this approach highly valuable for the development and advancement of novel rare earth hybrid luminescent materials.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 32","pages":" 25885-25893"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra03377b?page=search","citationCount":"0","resultStr":"{\"title\":\"Synthesis, characterization, and photophysical properties of europium complex-functionalized fumed silica and its corresponding PMMA-doped composites†\",\"authors\":\"Qiuping Li, Hongxia Ouyang, Xinghui Yang, Qi Wang, Yonghong Ding, Haichao Yu and Zhi Rao\",\"doi\":\"10.1039/D5RA03377B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Lanthanide organic–inorganic hybrid fluorescent materials are considered as promising candidates for next-generation lighting materials due to their unique optical properties and potential applications. In this work, commercialized silica materials (fumed silica) were selected as the carrier. By means of the bridging function of silane coupling agents, Eu(TTA)<small><sub>3</sub></small>(Phen) was covalently grafted onto the surface of fumed silica to synthesize lanthanide hybrid phosphors. Subsequently, the phosphor was dispersed into the MMA polymerization system, and a monolithic fluorescent organic glass was fabricated <em>via in situ</em> polymerization. Both the obtained europium hybrid phosphor and the europium complex-doped organic glass exhibited intense red fluorescence under UV light and possessed the characteristics of broad absorption, narrow emission, and long fluorescence lifetime. The design and synthesis process is straightforward and cost-effective, making this approach highly valuable for the development and advancement of novel rare earth hybrid luminescent materials.</p>\",\"PeriodicalId\":102,\"journal\":{\"name\":\"RSC Advances\",\"volume\":\" 32\",\"pages\":\" 25885-25893\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra03377b?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Advances\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra03377b\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra03377b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Synthesis, characterization, and photophysical properties of europium complex-functionalized fumed silica and its corresponding PMMA-doped composites†
Lanthanide organic–inorganic hybrid fluorescent materials are considered as promising candidates for next-generation lighting materials due to their unique optical properties and potential applications. In this work, commercialized silica materials (fumed silica) were selected as the carrier. By means of the bridging function of silane coupling agents, Eu(TTA)3(Phen) was covalently grafted onto the surface of fumed silica to synthesize lanthanide hybrid phosphors. Subsequently, the phosphor was dispersed into the MMA polymerization system, and a monolithic fluorescent organic glass was fabricated via in situ polymerization. Both the obtained europium hybrid phosphor and the europium complex-doped organic glass exhibited intense red fluorescence under UV light and possessed the characteristics of broad absorption, narrow emission, and long fluorescence lifetime. The design and synthesis process is straightforward and cost-effective, making this approach highly valuable for the development and advancement of novel rare earth hybrid luminescent materials.
期刊介绍:
An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.