BiFeO3层定制有源区的短路电流密度优化:第三代钙钛矿太阳能电池的计算步骤

IF 4.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
RSC Advances Pub Date : 2025-07-21 DOI:10.1039/D5RA03492B
Muqaddas Ameen, Muhammad Bilal, Muhammad Umar Salman, Muhammad Luqman, Shahid M. Ramay, Waqas Mahmood and Shahid Atiq
{"title":"BiFeO3层定制有源区的短路电流密度优化:第三代钙钛矿太阳能电池的计算步骤","authors":"Muqaddas Ameen, Muhammad Bilal, Muhammad Umar Salman, Muhammad Luqman, Shahid M. Ramay, Waqas Mahmood and Shahid Atiq","doi":"10.1039/D5RA03492B","DOIUrl":null,"url":null,"abstract":"<p >The global energy crisis has intensified the search for sustainable and clean energy alternatives, with solar energy emerging as a promising solution. The global energy crisis has intensified the search for sustainable and clean energy alternatives, with solar energy emerging as a promising solution. This study investigates the performance of BiFeO<small><sub>3</sub></small> (BFO)-based perovskite solar cells using COMSOL Multiphysics simulations, focusing on the optimization of layer thicknesses and material properties. The results demonstrate that varying the thickness of the electron transport layer, absorber layer (BFO), and hole transport layer significantly impacts the short-circuit current density (<em>J</em><small><sub>sc</sub></small>), open-circuit voltage (<em>V</em><small><sub>oc</sub></small>), and power conversion efficiency. Key findings include an optimal BFO thickness of 1210 nm, which balances light absorption and recombination losses, and a peak efficiency of 11.80% was observed. The study highlights the potential of BFO as a multiferroic absorber layer for high-efficiency, low-cost solar cells, paving the way for advancements in renewable energy technology.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 32","pages":" 25799-25810"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra03492b?page=search","citationCount":"0","resultStr":"{\"title\":\"Optimization of short-circuit current density for tailored active region in BiFeO3 layer: a computational step into 3rd generation perovskite solar cells\",\"authors\":\"Muqaddas Ameen, Muhammad Bilal, Muhammad Umar Salman, Muhammad Luqman, Shahid M. Ramay, Waqas Mahmood and Shahid Atiq\",\"doi\":\"10.1039/D5RA03492B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The global energy crisis has intensified the search for sustainable and clean energy alternatives, with solar energy emerging as a promising solution. The global energy crisis has intensified the search for sustainable and clean energy alternatives, with solar energy emerging as a promising solution. This study investigates the performance of BiFeO<small><sub>3</sub></small> (BFO)-based perovskite solar cells using COMSOL Multiphysics simulations, focusing on the optimization of layer thicknesses and material properties. The results demonstrate that varying the thickness of the electron transport layer, absorber layer (BFO), and hole transport layer significantly impacts the short-circuit current density (<em>J</em><small><sub>sc</sub></small>), open-circuit voltage (<em>V</em><small><sub>oc</sub></small>), and power conversion efficiency. Key findings include an optimal BFO thickness of 1210 nm, which balances light absorption and recombination losses, and a peak efficiency of 11.80% was observed. The study highlights the potential of BFO as a multiferroic absorber layer for high-efficiency, low-cost solar cells, paving the way for advancements in renewable energy technology.</p>\",\"PeriodicalId\":102,\"journal\":{\"name\":\"RSC Advances\",\"volume\":\" 32\",\"pages\":\" 25799-25810\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra03492b?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Advances\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra03492b\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra03492b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

全球能源危机加剧了对可持续和清洁能源替代品的探索,太阳能成为一个有希望的解决方案。全球能源危机加剧了对可持续和清洁能源替代品的探索,太阳能成为一个有希望的解决方案。本研究利用COMSOL Multiphysics模拟研究了BiFeO3 (BFO)基钙钛矿太阳能电池的性能,重点研究了层厚度和材料性能的优化。结果表明,改变电子传输层、吸收层和空穴传输层的厚度对短路电流密度(Jsc)、开路电压(Voc)和功率转换效率有显著影响。关键发现包括最佳BFO厚度为1210 nm,平衡了光吸收和复合损失,峰值效率为11.80%。该研究强调了BFO作为高效、低成本太阳能电池的多铁吸收层的潜力,为可再生能源技术的进步铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optimization of short-circuit current density for tailored active region in BiFeO3 layer: a computational step into 3rd generation perovskite solar cells

Optimization of short-circuit current density for tailored active region in BiFeO3 layer: a computational step into 3rd generation perovskite solar cells

The global energy crisis has intensified the search for sustainable and clean energy alternatives, with solar energy emerging as a promising solution. The global energy crisis has intensified the search for sustainable and clean energy alternatives, with solar energy emerging as a promising solution. This study investigates the performance of BiFeO3 (BFO)-based perovskite solar cells using COMSOL Multiphysics simulations, focusing on the optimization of layer thicknesses and material properties. The results demonstrate that varying the thickness of the electron transport layer, absorber layer (BFO), and hole transport layer significantly impacts the short-circuit current density (Jsc), open-circuit voltage (Voc), and power conversion efficiency. Key findings include an optimal BFO thickness of 1210 nm, which balances light absorption and recombination losses, and a peak efficiency of 11.80% was observed. The study highlights the potential of BFO as a multiferroic absorber layer for high-efficiency, low-cost solar cells, paving the way for advancements in renewable energy technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信