Trudy J. Philips , Benoit Banga N’guessan , Eunice Dotse , Joseph Kofi Abankwah , Regina Appiah-Opong
{"title":"核黄碱和n -乙酰半胱氨酸保护正常前列腺细胞免受化疗诱导的氧化应激,同时选择性调节甲氨蝶呤和多西紫杉醇对前列腺(PC-3)和乳腺癌(MCF-7)细胞的细胞毒性","authors":"Trudy J. Philips , Benoit Banga N’guessan , Eunice Dotse , Joseph Kofi Abankwah , Regina Appiah-Opong","doi":"10.1016/j.biopha.2025.118355","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Cancer chemotherapy often results in severe side effects due to its non-selective cytotoxicity toward rapidly dividing normal cells. These adverse effects are largely driven by oxidative stress resulting from elevated reactive oxygen species (ROS) production. Riboceine (RIB), a synthetic precursor of glutathione (GSH), and N-acetylcysteine (NAC), a clinically used antioxidant, hold promise in mitigating oxidative damage; however, their impact on chemotherapy efficacy and the molecular mechanisms involved remain incompletely understood.</div></div><div><h3>Aim</h3><div>This study aimed to evaluate the cytoprotective potential of RIB and NAC against methotrexate (MET)- and docetaxel (DOC)-induced toxicity in normal and cancer cells, and to explore mechanistic pathways using integrative network pharmacology and molecular docking approaches.</div></div><div><h3>Methodology</h3><div>Cytotoxic effects of MET and DOC, alone or in combination with RIB or NAC, were assessed in normal prostate epithelial (PNT-2), prostate cancer (PC3), and breast cancer (MCF-7) cell lines using the Resazurin assay. Intracellular ROS and GSH levels were quantified using DCF and OPA fluorescence assays, respectively. Network pharmacology, protein–protein interaction (PPI) analysis, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and molecular docking were conducted using SwissTargetPrediction, STRING, ShinyGO, Cytoscape, and AutoDock Vina platforms.</div></div><div><h3>Results</h3><div>MET and DOC showed dose-dependent cytotoxicity in PNT-2 and PC3 cells, but limited efficacy in chemoresistant MCF-7 cells. RIB and NAC significantly reduced ROS and restored GSH levels in PNT-2 cells, protecting them against oxidative injury. These antioxidants preserved anticancer effects in PC3 cells but reduced chemotherapy efficacy in MCF-7 cells, likely due to elevated redox buffering and transporter expression. Network analyses identified BCL-2, MAPK8, and SOD among key antioxidant and apoptotic targets. However, no direct experimental validation of these mechanisms was performed, and apoptotic markers such as Annexin V or caspase-3 were not assessed.</div></div><div><h3>Conclusion</h3><div>RIB and NAC provide selective cytoprotection to normal prostate cells during chemotherapy while maintaining anticancer effects in sensitive prostate cancer cells. However, their concurrent use in resistant cancers like MCF-7 may reduce drug efficacy, warranting cautious clinical application. Time-shifted antioxidant administration (e.g., post-chemotherapy) could be explored as a strategy to balance protection and efficacy. Future studies should include <em>in vivo</em> validation, apoptosis profiling, and protein-level mechanistic assays to confirm the predicted pathways.</div></div>","PeriodicalId":8966,"journal":{"name":"Biomedicine & Pharmacotherapy","volume":"190 ","pages":"Article 118355"},"PeriodicalIF":6.9000,"publicationDate":"2025-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Riboceine and N-acetylcysteine protect normal prostate cells from chemotherapy-induced oxidative stress while selectively modulating the cytotoxicity of methotrexate and docetaxel in prostate (PC-3) and breast cancer (MCF-7) cells\",\"authors\":\"Trudy J. Philips , Benoit Banga N’guessan , Eunice Dotse , Joseph Kofi Abankwah , Regina Appiah-Opong\",\"doi\":\"10.1016/j.biopha.2025.118355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Cancer chemotherapy often results in severe side effects due to its non-selective cytotoxicity toward rapidly dividing normal cells. These adverse effects are largely driven by oxidative stress resulting from elevated reactive oxygen species (ROS) production. Riboceine (RIB), a synthetic precursor of glutathione (GSH), and N-acetylcysteine (NAC), a clinically used antioxidant, hold promise in mitigating oxidative damage; however, their impact on chemotherapy efficacy and the molecular mechanisms involved remain incompletely understood.</div></div><div><h3>Aim</h3><div>This study aimed to evaluate the cytoprotective potential of RIB and NAC against methotrexate (MET)- and docetaxel (DOC)-induced toxicity in normal and cancer cells, and to explore mechanistic pathways using integrative network pharmacology and molecular docking approaches.</div></div><div><h3>Methodology</h3><div>Cytotoxic effects of MET and DOC, alone or in combination with RIB or NAC, were assessed in normal prostate epithelial (PNT-2), prostate cancer (PC3), and breast cancer (MCF-7) cell lines using the Resazurin assay. Intracellular ROS and GSH levels were quantified using DCF and OPA fluorescence assays, respectively. Network pharmacology, protein–protein interaction (PPI) analysis, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and molecular docking were conducted using SwissTargetPrediction, STRING, ShinyGO, Cytoscape, and AutoDock Vina platforms.</div></div><div><h3>Results</h3><div>MET and DOC showed dose-dependent cytotoxicity in PNT-2 and PC3 cells, but limited efficacy in chemoresistant MCF-7 cells. RIB and NAC significantly reduced ROS and restored GSH levels in PNT-2 cells, protecting them against oxidative injury. These antioxidants preserved anticancer effects in PC3 cells but reduced chemotherapy efficacy in MCF-7 cells, likely due to elevated redox buffering and transporter expression. Network analyses identified BCL-2, MAPK8, and SOD among key antioxidant and apoptotic targets. However, no direct experimental validation of these mechanisms was performed, and apoptotic markers such as Annexin V or caspase-3 were not assessed.</div></div><div><h3>Conclusion</h3><div>RIB and NAC provide selective cytoprotection to normal prostate cells during chemotherapy while maintaining anticancer effects in sensitive prostate cancer cells. However, their concurrent use in resistant cancers like MCF-7 may reduce drug efficacy, warranting cautious clinical application. Time-shifted antioxidant administration (e.g., post-chemotherapy) could be explored as a strategy to balance protection and efficacy. Future studies should include <em>in vivo</em> validation, apoptosis profiling, and protein-level mechanistic assays to confirm the predicted pathways.</div></div>\",\"PeriodicalId\":8966,\"journal\":{\"name\":\"Biomedicine & Pharmacotherapy\",\"volume\":\"190 \",\"pages\":\"Article 118355\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedicine & Pharmacotherapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0753332225005499\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicine & Pharmacotherapy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0753332225005499","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Riboceine and N-acetylcysteine protect normal prostate cells from chemotherapy-induced oxidative stress while selectively modulating the cytotoxicity of methotrexate and docetaxel in prostate (PC-3) and breast cancer (MCF-7) cells
Background
Cancer chemotherapy often results in severe side effects due to its non-selective cytotoxicity toward rapidly dividing normal cells. These adverse effects are largely driven by oxidative stress resulting from elevated reactive oxygen species (ROS) production. Riboceine (RIB), a synthetic precursor of glutathione (GSH), and N-acetylcysteine (NAC), a clinically used antioxidant, hold promise in mitigating oxidative damage; however, their impact on chemotherapy efficacy and the molecular mechanisms involved remain incompletely understood.
Aim
This study aimed to evaluate the cytoprotective potential of RIB and NAC against methotrexate (MET)- and docetaxel (DOC)-induced toxicity in normal and cancer cells, and to explore mechanistic pathways using integrative network pharmacology and molecular docking approaches.
Methodology
Cytotoxic effects of MET and DOC, alone or in combination with RIB or NAC, were assessed in normal prostate epithelial (PNT-2), prostate cancer (PC3), and breast cancer (MCF-7) cell lines using the Resazurin assay. Intracellular ROS and GSH levels were quantified using DCF and OPA fluorescence assays, respectively. Network pharmacology, protein–protein interaction (PPI) analysis, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and molecular docking were conducted using SwissTargetPrediction, STRING, ShinyGO, Cytoscape, and AutoDock Vina platforms.
Results
MET and DOC showed dose-dependent cytotoxicity in PNT-2 and PC3 cells, but limited efficacy in chemoresistant MCF-7 cells. RIB and NAC significantly reduced ROS and restored GSH levels in PNT-2 cells, protecting them against oxidative injury. These antioxidants preserved anticancer effects in PC3 cells but reduced chemotherapy efficacy in MCF-7 cells, likely due to elevated redox buffering and transporter expression. Network analyses identified BCL-2, MAPK8, and SOD among key antioxidant and apoptotic targets. However, no direct experimental validation of these mechanisms was performed, and apoptotic markers such as Annexin V or caspase-3 were not assessed.
Conclusion
RIB and NAC provide selective cytoprotection to normal prostate cells during chemotherapy while maintaining anticancer effects in sensitive prostate cancer cells. However, their concurrent use in resistant cancers like MCF-7 may reduce drug efficacy, warranting cautious clinical application. Time-shifted antioxidant administration (e.g., post-chemotherapy) could be explored as a strategy to balance protection and efficacy. Future studies should include in vivo validation, apoptosis profiling, and protein-level mechanistic assays to confirm the predicted pathways.
期刊介绍:
Biomedicine & Pharmacotherapy stands as a multidisciplinary journal, presenting a spectrum of original research reports, reviews, and communications in the realms of clinical and basic medicine, as well as pharmacology. The journal spans various fields, including Cancer, Nutriceutics, Neurodegenerative, Cardiac, and Infectious Diseases.