Xin Liu , Cong Xiao , Huabin Yang , Qirui Zhang , Na Zhou , Haiyang Mao
{"title":"用于穿戴式健康监测和人机交互的湿度传感器","authors":"Xin Liu , Cong Xiao , Huabin Yang , Qirui Zhang , Na Zhou , Haiyang Mao","doi":"10.1016/j.mtelec.2025.100167","DOIUrl":null,"url":null,"abstract":"<div><div>With the rapid development of wearable technology, humidity sensors have become increasingly important in the fields of health monitoring and human-machine interaction. This paper reviews the latest advancements in humidity sensors for wearable health applications, highlighting their applications in key areas such as breath monitoring, emotion recognition, diaper monitoring, and skin moisture detection. Due to their simple structure, high sensitivity, and non-contact detection capabilities, humidity sensors are gradually becoming a core technology for achieving real-time health monitoring and intelligent interaction. We provide an overview of the material innovations and development directions in current humidity sensor technology. Additionally, we systematically discuss the significance of humidity sensors in dynamic physiological signal monitoring and their potential applications in smart healthcare, sports training, emotion recognition, and non-contact interaction. Despite the broad prospects of humidity sensors in various applications, they still face several specific challenges. Finally, this paper proposes future research directions, calling for in-depth exploration of material innovations, system integration, and intelligent applications of humidity sensors to promote the development of personalized healthcare and smart health management.</div></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":"13 ","pages":"Article 100167"},"PeriodicalIF":7.4000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Humidity sensors for wearable health monitoring and human-machine interaction\",\"authors\":\"Xin Liu , Cong Xiao , Huabin Yang , Qirui Zhang , Na Zhou , Haiyang Mao\",\"doi\":\"10.1016/j.mtelec.2025.100167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the rapid development of wearable technology, humidity sensors have become increasingly important in the fields of health monitoring and human-machine interaction. This paper reviews the latest advancements in humidity sensors for wearable health applications, highlighting their applications in key areas such as breath monitoring, emotion recognition, diaper monitoring, and skin moisture detection. Due to their simple structure, high sensitivity, and non-contact detection capabilities, humidity sensors are gradually becoming a core technology for achieving real-time health monitoring and intelligent interaction. We provide an overview of the material innovations and development directions in current humidity sensor technology. Additionally, we systematically discuss the significance of humidity sensors in dynamic physiological signal monitoring and their potential applications in smart healthcare, sports training, emotion recognition, and non-contact interaction. Despite the broad prospects of humidity sensors in various applications, they still face several specific challenges. Finally, this paper proposes future research directions, calling for in-depth exploration of material innovations, system integration, and intelligent applications of humidity sensors to promote the development of personalized healthcare and smart health management.</div></div>\",\"PeriodicalId\":100893,\"journal\":{\"name\":\"Materials Today Electronics\",\"volume\":\"13 \",\"pages\":\"Article 100167\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772949425000336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Electronics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772949425000336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Humidity sensors for wearable health monitoring and human-machine interaction
With the rapid development of wearable technology, humidity sensors have become increasingly important in the fields of health monitoring and human-machine interaction. This paper reviews the latest advancements in humidity sensors for wearable health applications, highlighting their applications in key areas such as breath monitoring, emotion recognition, diaper monitoring, and skin moisture detection. Due to their simple structure, high sensitivity, and non-contact detection capabilities, humidity sensors are gradually becoming a core technology for achieving real-time health monitoring and intelligent interaction. We provide an overview of the material innovations and development directions in current humidity sensor technology. Additionally, we systematically discuss the significance of humidity sensors in dynamic physiological signal monitoring and their potential applications in smart healthcare, sports training, emotion recognition, and non-contact interaction. Despite the broad prospects of humidity sensors in various applications, they still face several specific challenges. Finally, this paper proposes future research directions, calling for in-depth exploration of material innovations, system integration, and intelligent applications of humidity sensors to promote the development of personalized healthcare and smart health management.