基于深度学习的6G工业物联网网络威胁检测:最新解决方案、挑战和未来研究方向综述

IF 7.6 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Gaoyang Guo , Faizan Qamar , Syed Hussain Ali Kazmi , Muhammad Habib ur Rehman
{"title":"基于深度学习的6G工业物联网网络威胁检测:最新解决方案、挑战和未来研究方向综述","authors":"Gaoyang Guo ,&nbsp;Faizan Qamar ,&nbsp;Syed Hussain Ali Kazmi ,&nbsp;Muhammad Habib ur Rehman","doi":"10.1016/j.iot.2025.101686","DOIUrl":null,"url":null,"abstract":"<div><div>The integration of the Industrial Internet of Things (IIoT) with sixth-generation (6G) communication technology is a critical foundation for the next generation of intelligent manufacturing and industrial automation. However, this advancement introduces significant security challenges, particularly in threat detection for IIoT systems. This paper systematically reviews existing research on threat detection in 6G-IIoT environments using Deep Learning (DL) techniques. It examines key challenges related to data processing, privacy protection, and model performance. The study first outlines the security requirements of IIoT within a 6G network environment and evaluates the application of various DL models for threat detection. It then identifies key limitations in current research, including dataset imbalance and the limited generalization capability of existing models. Finally, potential future research directions are discussed to advance the development of more intelligent and efficient threat detection mechanisms, ensuring the security and stability of IIoT systems in the 6G era.</div></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"33 ","pages":"Article 101686"},"PeriodicalIF":7.6000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Threat detection in the 6G enabled Industrial IoT Networks using Deep Learning: A review on the state-of-the-art solutions, challenges and future research directions\",\"authors\":\"Gaoyang Guo ,&nbsp;Faizan Qamar ,&nbsp;Syed Hussain Ali Kazmi ,&nbsp;Muhammad Habib ur Rehman\",\"doi\":\"10.1016/j.iot.2025.101686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The integration of the Industrial Internet of Things (IIoT) with sixth-generation (6G) communication technology is a critical foundation for the next generation of intelligent manufacturing and industrial automation. However, this advancement introduces significant security challenges, particularly in threat detection for IIoT systems. This paper systematically reviews existing research on threat detection in 6G-IIoT environments using Deep Learning (DL) techniques. It examines key challenges related to data processing, privacy protection, and model performance. The study first outlines the security requirements of IIoT within a 6G network environment and evaluates the application of various DL models for threat detection. It then identifies key limitations in current research, including dataset imbalance and the limited generalization capability of existing models. Finally, potential future research directions are discussed to advance the development of more intelligent and efficient threat detection mechanisms, ensuring the security and stability of IIoT systems in the 6G era.</div></div>\",\"PeriodicalId\":29968,\"journal\":{\"name\":\"Internet of Things\",\"volume\":\"33 \",\"pages\":\"Article 101686\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet of Things\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542660525002008\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660525002008","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

工业物联网(IIoT)与第六代(6G)通信技术的融合是下一代智能制造和工业自动化的重要基础。然而,这一进步带来了重大的安全挑战,特别是在工业物联网系统的威胁检测方面。本文系统地回顾了利用深度学习(DL)技术在6G-IIoT环境中进行威胁检测的现有研究。它研究了与数据处理、隐私保护和模型性能相关的关键挑战。该研究首先概述了6G网络环境下工业物联网的安全要求,并评估了各种威胁检测DL模型的应用。然后指出了当前研究中的关键局限性,包括数据集不平衡和现有模型的有限泛化能力。最后,讨论了未来可能的研究方向,以推动更智能、更高效的威胁检测机制的发展,确保6G时代工业物联网系统的安全和稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Threat detection in the 6G enabled Industrial IoT Networks using Deep Learning: A review on the state-of-the-art solutions, challenges and future research directions
The integration of the Industrial Internet of Things (IIoT) with sixth-generation (6G) communication technology is a critical foundation for the next generation of intelligent manufacturing and industrial automation. However, this advancement introduces significant security challenges, particularly in threat detection for IIoT systems. This paper systematically reviews existing research on threat detection in 6G-IIoT environments using Deep Learning (DL) techniques. It examines key challenges related to data processing, privacy protection, and model performance. The study first outlines the security requirements of IIoT within a 6G network environment and evaluates the application of various DL models for threat detection. It then identifies key limitations in current research, including dataset imbalance and the limited generalization capability of existing models. Finally, potential future research directions are discussed to advance the development of more intelligent and efficient threat detection mechanisms, ensuring the security and stability of IIoT systems in the 6G era.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Internet of Things
Internet of Things Multiple-
CiteScore
3.60
自引率
5.10%
发文量
115
审稿时长
37 days
期刊介绍: Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT. The journal will place a high priority on timely publication, and provide a home for high quality. Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信