Abhinav Priyadarshi , Amanpreet Kaur , Mohammad Khavari , Justin A. Morton , Anastasia V. Tyurnina , Morteza Ghorbani , Paul Prentice , Jiawei Mi , Koulis Pericleous , Peter D. Lee , Dmitry G. Eskin , Iakovos Tzanakis
{"title":"冲击波在材料加工中的作用:基础和应用","authors":"Abhinav Priyadarshi , Amanpreet Kaur , Mohammad Khavari , Justin A. Morton , Anastasia V. Tyurnina , Morteza Ghorbani , Paul Prentice , Jiawei Mi , Koulis Pericleous , Peter D. Lee , Dmitry G. Eskin , Iakovos Tzanakis","doi":"10.1016/j.ultsonch.2025.107473","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, ultrasonic processing (USP) technology has led to some of the most promising scientific breakthroughs in the field of pharmaceutical, food, environmental and material sciences leading to advancements in manufacturing, process efficiency, and material performance. However, the industrial scalability of USP still remains a key challenge, largely due to the lack of awareness, standardization and predictive multiphysics models. Optimizing this technology necessitates a bottom-up approach, emphasizing fundamental understanding of the physical phenomena at play prior to scaling-up. Despite the advancements of opto-acoustic characterization tools, the underlying root-cause driving these technological innovations remains unexplored. This paper provides a comprehensive overview of our work carried out in the last 5 years to uncover the fundamental mechanism that governs the deployment of USP in areas related to metal casting, additive manufacturing, production of nanomaterials and composites by employing <em>in-situ</em> high-speed visualizations techniques and characterization of acoustic emissions. The results presented and discussed in this article offer a new perspective on the pivotal role of cavitation-induced shock waves, shifting the focus from being just a by-product, to a primary driver of material modification during USP.</div></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"120 ","pages":"Article 107473"},"PeriodicalIF":8.7000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of shock waves in materials processing: Fundamentals and Applications\",\"authors\":\"Abhinav Priyadarshi , Amanpreet Kaur , Mohammad Khavari , Justin A. Morton , Anastasia V. Tyurnina , Morteza Ghorbani , Paul Prentice , Jiawei Mi , Koulis Pericleous , Peter D. Lee , Dmitry G. Eskin , Iakovos Tzanakis\",\"doi\":\"10.1016/j.ultsonch.2025.107473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In recent years, ultrasonic processing (USP) technology has led to some of the most promising scientific breakthroughs in the field of pharmaceutical, food, environmental and material sciences leading to advancements in manufacturing, process efficiency, and material performance. However, the industrial scalability of USP still remains a key challenge, largely due to the lack of awareness, standardization and predictive multiphysics models. Optimizing this technology necessitates a bottom-up approach, emphasizing fundamental understanding of the physical phenomena at play prior to scaling-up. Despite the advancements of opto-acoustic characterization tools, the underlying root-cause driving these technological innovations remains unexplored. This paper provides a comprehensive overview of our work carried out in the last 5 years to uncover the fundamental mechanism that governs the deployment of USP in areas related to metal casting, additive manufacturing, production of nanomaterials and composites by employing <em>in-situ</em> high-speed visualizations techniques and characterization of acoustic emissions. The results presented and discussed in this article offer a new perspective on the pivotal role of cavitation-induced shock waves, shifting the focus from being just a by-product, to a primary driver of material modification during USP.</div></div>\",\"PeriodicalId\":442,\"journal\":{\"name\":\"Ultrasonics Sonochemistry\",\"volume\":\"120 \",\"pages\":\"Article 107473\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2025-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasonics Sonochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350417725002524\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350417725002524","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
Role of shock waves in materials processing: Fundamentals and Applications
In recent years, ultrasonic processing (USP) technology has led to some of the most promising scientific breakthroughs in the field of pharmaceutical, food, environmental and material sciences leading to advancements in manufacturing, process efficiency, and material performance. However, the industrial scalability of USP still remains a key challenge, largely due to the lack of awareness, standardization and predictive multiphysics models. Optimizing this technology necessitates a bottom-up approach, emphasizing fundamental understanding of the physical phenomena at play prior to scaling-up. Despite the advancements of opto-acoustic characterization tools, the underlying root-cause driving these technological innovations remains unexplored. This paper provides a comprehensive overview of our work carried out in the last 5 years to uncover the fundamental mechanism that governs the deployment of USP in areas related to metal casting, additive manufacturing, production of nanomaterials and composites by employing in-situ high-speed visualizations techniques and characterization of acoustic emissions. The results presented and discussed in this article offer a new perspective on the pivotal role of cavitation-induced shock waves, shifting the focus from being just a by-product, to a primary driver of material modification during USP.
期刊介绍:
Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels.
Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.