变系数非局域Hirota方程的双线性化、孤子和调制不稳定性

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Hao-Dong Liu, Bo Tian
{"title":"变系数非局域Hirota方程的双线性化、孤子和调制不稳定性","authors":"Hao-Dong Liu,&nbsp;Bo Tian","doi":"10.1016/j.aml.2025.109688","DOIUrl":null,"url":null,"abstract":"<div><div>Hirota-type equations have been used to model certain nonlinear waves in the nonlinear optical fibers. In this paper, a variable-coefficient nonlocal Hirota equation is investigated: Via the improved Hirota method, we obtain the bilinear forms and soliton solutions; The asymptotic analysis is discussed; We also study the modulational instability.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"172 ","pages":"Article 109688"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bilinearization, solitons and modulational instability for a variable-coefficient nonlocal Hirota equation\",\"authors\":\"Hao-Dong Liu,&nbsp;Bo Tian\",\"doi\":\"10.1016/j.aml.2025.109688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hirota-type equations have been used to model certain nonlinear waves in the nonlinear optical fibers. In this paper, a variable-coefficient nonlocal Hirota equation is investigated: Via the improved Hirota method, we obtain the bilinear forms and soliton solutions; The asymptotic analysis is discussed; We also study the modulational instability.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"172 \",\"pages\":\"Article 109688\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965925002381\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925002381","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

Hirota方程已被用来模拟非线性光纤中的某些非线性波。本文研究了一类变系数非局部Hirota方程:利用改进的Hirota方法,得到了该方程的双线性形式和孤子解;讨论了渐近分析;我们还研究了调制不稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bilinearization, solitons and modulational instability for a variable-coefficient nonlocal Hirota equation
Hirota-type equations have been used to model certain nonlinear waves in the nonlinear optical fibers. In this paper, a variable-coefficient nonlocal Hirota equation is investigated: Via the improved Hirota method, we obtain the bilinear forms and soliton solutions; The asymptotic analysis is discussed; We also study the modulational instability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信