基于硫化镉/还原氧化石墨烯的光合生物混合系统晶体面优化,以增强光驱动生物氢生产

IF 9.7 1区 环境科学与生态学 Q1 AGRICULTURAL ENGINEERING
Xue-Meng Wang , Zhi-Xuan Zhang , Lin Chen , Rong Chen , Wen-Wei Li
{"title":"基于硫化镉/还原氧化石墨烯的光合生物混合系统晶体面优化,以增强光驱动生物氢生产","authors":"Xue-Meng Wang ,&nbsp;Zhi-Xuan Zhang ,&nbsp;Lin Chen ,&nbsp;Rong Chen ,&nbsp;Wen-Wei Li","doi":"10.1016/j.biortech.2025.133017","DOIUrl":null,"url":null,"abstract":"<div><div>The development of photosynthetic biohybrid systems (PBSs) integrating inorganic light absorbers with non-photosynthetic bacteria innovate wastewater valorization via organics bioconversion, yet interfacial electron transfer bottlenecks limit efficiency. To address this, we regulated crystal facet exposure ratios in cadmium sulfide/reduced graphene oxide (CdS/RGO) through hydrothermal synthesis time control, observing facet-dependent activity trends. The optimized biohybrid achieved a maximum hydrogen yield of 2195.3 μmol (233.6 µmol·g<sup>−1</sup>·h<sup>−1</sup> over 8 h), representing a 295 % enhancement over unmodified PBSs. Density functional theory (DFT) calculations revealed that increased exposure of high-activity (1<!--> <!-->0<!--> <!-->3) and (1<!--> <!-->1<!--> <!-->2) facets correlated with reduced work function values, promoting electron emission. Synergistically combined with RGO’s electron-shuttling function, this facilitated charge transfer to bacterial outer membrane proteins. These results demonstrate facet engineering as a tunable strategy for enhancing electron donation capacity in PBSs, offering design principles for biohybrid systems.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"436 ","pages":"Article 133017"},"PeriodicalIF":9.7000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crystal facet optimization in cadmium sulfide/reduced graphene oxide-based photosynthetic biohybrid systems for enhanced light-driven biohydrogen production\",\"authors\":\"Xue-Meng Wang ,&nbsp;Zhi-Xuan Zhang ,&nbsp;Lin Chen ,&nbsp;Rong Chen ,&nbsp;Wen-Wei Li\",\"doi\":\"10.1016/j.biortech.2025.133017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The development of photosynthetic biohybrid systems (PBSs) integrating inorganic light absorbers with non-photosynthetic bacteria innovate wastewater valorization via organics bioconversion, yet interfacial electron transfer bottlenecks limit efficiency. To address this, we regulated crystal facet exposure ratios in cadmium sulfide/reduced graphene oxide (CdS/RGO) through hydrothermal synthesis time control, observing facet-dependent activity trends. The optimized biohybrid achieved a maximum hydrogen yield of 2195.3 μmol (233.6 µmol·g<sup>−1</sup>·h<sup>−1</sup> over 8 h), representing a 295 % enhancement over unmodified PBSs. Density functional theory (DFT) calculations revealed that increased exposure of high-activity (1<!--> <!-->0<!--> <!-->3) and (1<!--> <!-->1<!--> <!-->2) facets correlated with reduced work function values, promoting electron emission. Synergistically combined with RGO’s electron-shuttling function, this facilitated charge transfer to bacterial outer membrane proteins. These results demonstrate facet engineering as a tunable strategy for enhancing electron donation capacity in PBSs, offering design principles for biohybrid systems.</div></div>\",\"PeriodicalId\":258,\"journal\":{\"name\":\"Bioresource Technology\",\"volume\":\"436 \",\"pages\":\"Article 133017\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2025-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresource Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960852425009836\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960852425009836","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

结合无机光吸收剂和非光合细菌的光合生物混合系统(PBSs)的发展创新了通过有机生物转化的废水增值,但界面电子转移瓶颈限制了效率。为了解决这一问题,我们通过水热合成时间控制来调节硫化镉/还原氧化石墨烯(CdS/RGO)中的晶面暴露比,观察晶面依赖的活性趋势。优化后的生物杂化产物的产氢率最高为2195.3 μmol (233.6 μmol·g−1·h−1 / 8 h),比未修饰的PBSs提高了295%。密度泛函理论(DFT)计算表明,高活性(103)和(112)面的暴露增加与功函数值降低相关,促进电子发射。与还原氧化石墨烯的电子穿梭功能协同作用,促进了电荷向细菌外膜蛋白的转移。这些结果表明,面工程是提高PBSs电子捐赠能力的可调策略,为生物混合系统提供了设计原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Crystal facet optimization in cadmium sulfide/reduced graphene oxide-based photosynthetic biohybrid systems for enhanced light-driven biohydrogen production

Crystal facet optimization in cadmium sulfide/reduced graphene oxide-based photosynthetic biohybrid systems for enhanced light-driven biohydrogen production
The development of photosynthetic biohybrid systems (PBSs) integrating inorganic light absorbers with non-photosynthetic bacteria innovate wastewater valorization via organics bioconversion, yet interfacial electron transfer bottlenecks limit efficiency. To address this, we regulated crystal facet exposure ratios in cadmium sulfide/reduced graphene oxide (CdS/RGO) through hydrothermal synthesis time control, observing facet-dependent activity trends. The optimized biohybrid achieved a maximum hydrogen yield of 2195.3 μmol (233.6 µmol·g−1·h−1 over 8 h), representing a 295 % enhancement over unmodified PBSs. Density functional theory (DFT) calculations revealed that increased exposure of high-activity (1 0 3) and (1 1 2) facets correlated with reduced work function values, promoting electron emission. Synergistically combined with RGO’s electron-shuttling function, this facilitated charge transfer to bacterial outer membrane proteins. These results demonstrate facet engineering as a tunable strategy for enhancing electron donation capacity in PBSs, offering design principles for biohybrid systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioresource Technology
Bioresource Technology 工程技术-能源与燃料
CiteScore
20.80
自引率
19.30%
发文量
2013
审稿时长
12 days
期刊介绍: Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies. Topics include: • Biofuels: liquid and gaseous biofuels production, modeling and economics • Bioprocesses and bioproducts: biocatalysis and fermentations • Biomass and feedstocks utilization: bioconversion of agro-industrial residues • Environmental protection: biological waste treatment • Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信