利用元胞自动机方法揭示基于事件的地表降雨径流响应的时空模式

IF 4.6 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Lidan Zhang , Yuming Wang , Xiaohong Chen
{"title":"利用元胞自动机方法揭示基于事件的地表降雨径流响应的时空模式","authors":"Lidan Zhang ,&nbsp;Yuming Wang ,&nbsp;Xiaohong Chen","doi":"10.1016/j.envsoft.2025.106623","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding surface water flow is critical for hydrological modeling and water resource management. Distributed hydrological models capture spatial heterogeneity in surface runoff, yet their full potential, especially in simulating surface flow complexities, requires further exploration. To bridge this gap, we developed the Surface Rainfall-Runoff Cellular Automata (SRRCA) model, a distributed hydrological framework featuring a Local-Finer Iteration (LFI) strategy to mitigate evolution errors from varying iteration steps. Implemented in a watershed in Wharfedale, England, the SRRCA model leverages multi-scale capabilities to resolve catchment-scale runoff dynamics and grid-scale flow interactions. Results indicated significant infiltration fluctuations in early rainfall due to spatial heterogeneity, alongside a strong correlation between peak flow and catchment size. Cells near confluence points exhibit delayed peaks, highlighting the influence of spatial position on runoff. This study systematically evaluates the strengths and limitations of cellular automata in hydrological modeling, and introduces a novel paradigm for investigating spatial heterogeneity in hydrology.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"193 ","pages":"Article 106623"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unravelling spatiotemporal patterns of event-based surface rainfall-runoff response using a cellular automata approach\",\"authors\":\"Lidan Zhang ,&nbsp;Yuming Wang ,&nbsp;Xiaohong Chen\",\"doi\":\"10.1016/j.envsoft.2025.106623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Understanding surface water flow is critical for hydrological modeling and water resource management. Distributed hydrological models capture spatial heterogeneity in surface runoff, yet their full potential, especially in simulating surface flow complexities, requires further exploration. To bridge this gap, we developed the Surface Rainfall-Runoff Cellular Automata (SRRCA) model, a distributed hydrological framework featuring a Local-Finer Iteration (LFI) strategy to mitigate evolution errors from varying iteration steps. Implemented in a watershed in Wharfedale, England, the SRRCA model leverages multi-scale capabilities to resolve catchment-scale runoff dynamics and grid-scale flow interactions. Results indicated significant infiltration fluctuations in early rainfall due to spatial heterogeneity, alongside a strong correlation between peak flow and catchment size. Cells near confluence points exhibit delayed peaks, highlighting the influence of spatial position on runoff. This study systematically evaluates the strengths and limitations of cellular automata in hydrological modeling, and introduces a novel paradigm for investigating spatial heterogeneity in hydrology.</div></div>\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":\"193 \",\"pages\":\"Article 106623\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S136481522500307X\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S136481522500307X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

了解地表水的流动对水文建模和水资源管理至关重要。分布式水文模型捕捉了地表径流的空间异质性,但其全部潜力,特别是在模拟地表径流复杂性方面,还需要进一步探索。为了弥补这一差距,我们开发了地表降雨-径流元胞自动机(SRRCA)模型,这是一个分布式水文框架,具有局部更细迭代(LFI)策略,以减轻不同迭代步骤带来的进化误差。SRRCA模型在英国Wharfedale的一个流域实施,利用多尺度能力来解决流域尺度的径流动态和网格尺度的流量相互作用。结果表明,由于空间异质性,早期降雨的入渗波动显著,同时峰值流量与流域大小有很强的相关性。靠近汇合点的细胞呈现延迟的峰值,突出了空间位置对径流的影响。本研究系统地评估了元胞自动机在水文建模中的优势和局限性,并引入了一种研究水文空间异质性的新范式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unravelling spatiotemporal patterns of event-based surface rainfall-runoff response using a cellular automata approach
Understanding surface water flow is critical for hydrological modeling and water resource management. Distributed hydrological models capture spatial heterogeneity in surface runoff, yet their full potential, especially in simulating surface flow complexities, requires further exploration. To bridge this gap, we developed the Surface Rainfall-Runoff Cellular Automata (SRRCA) model, a distributed hydrological framework featuring a Local-Finer Iteration (LFI) strategy to mitigate evolution errors from varying iteration steps. Implemented in a watershed in Wharfedale, England, the SRRCA model leverages multi-scale capabilities to resolve catchment-scale runoff dynamics and grid-scale flow interactions. Results indicated significant infiltration fluctuations in early rainfall due to spatial heterogeneity, alongside a strong correlation between peak flow and catchment size. Cells near confluence points exhibit delayed peaks, highlighting the influence of spatial position on runoff. This study systematically evaluates the strengths and limitations of cellular automata in hydrological modeling, and introduces a novel paradigm for investigating spatial heterogeneity in hydrology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信