Jinwook Lee, Saeid Janizadeh, Alexander Melancon, Sayed M. Bateni, Dongkyun Kim, Andrew Molthan, Changhyun Jun, Ramin Farhadiani, Saeid Homayouni, Megersa Dinka
{"title":"洪水检测使用PolSAR分解,特征选择和深度学习","authors":"Jinwook Lee, Saeid Janizadeh, Alexander Melancon, Sayed M. Bateni, Dongkyun Kim, Andrew Molthan, Changhyun Jun, Ramin Farhadiani, Saeid Homayouni, Megersa Dinka","doi":"10.1016/j.gr.2025.06.022","DOIUrl":null,"url":null,"abstract":"Accurate identification of inundated areas is crucial for mitigating the impacts of flooding, which causes numerous casualties and significant economic losses. While polarimetric synthetic aperture radar (PolSAR) data have been utilized to detect inundated regions, the information contained within PolSAR features remains severely underutilized. We introduce a novel approach that involves extracting a large number of PolSAR features through various PolSAR decomposition techniques, selecting the most important ones using the decision tree–recursive feature elimination (DT-RFE) method, and ultimately detecting inundation using a convolutional neural network (CNN) model. The hybrid DT-RFE–CNN model was trained and tested over a region in southeastern North Carolina during Hurricane Florence on September 18, 2018, using PolSAR features derived from the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR). In terms of flood-mapping efficacy, the DT-RFE–CNN model outperformed a CNN model that used only PolSAR data across all metrics in both the training and testing stages. The performance of the trained DT-RFE–CNN model was evaluated by testing it over the same region for four more days (September 19, 20, 22, and 23, 2018); it achieved an average accuracy, precision, recall, F1 score, and intersection-over-union of 0.9304, 0.9089, 0.9584, 0.9324, and 0.8738, respectively outperforming both the classical Otsu method and the FT-Transformer model using features selected by DT-RFE. Finally, we assessed the model’s generalizability by mapping another significant flood event, caused by Hurricane Harvey in Texas between August and September 2017. Based on the results, the hybrid model can accurately detect flooding, even in regions on which it has not been trained. Thus, the proposed method can facilitate flood monitoring and response efforts.","PeriodicalId":12761,"journal":{"name":"Gondwana Research","volume":"14 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flood detection using PolSAR decomposition, feature selection, and deep learning\",\"authors\":\"Jinwook Lee, Saeid Janizadeh, Alexander Melancon, Sayed M. Bateni, Dongkyun Kim, Andrew Molthan, Changhyun Jun, Ramin Farhadiani, Saeid Homayouni, Megersa Dinka\",\"doi\":\"10.1016/j.gr.2025.06.022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate identification of inundated areas is crucial for mitigating the impacts of flooding, which causes numerous casualties and significant economic losses. While polarimetric synthetic aperture radar (PolSAR) data have been utilized to detect inundated regions, the information contained within PolSAR features remains severely underutilized. We introduce a novel approach that involves extracting a large number of PolSAR features through various PolSAR decomposition techniques, selecting the most important ones using the decision tree–recursive feature elimination (DT-RFE) method, and ultimately detecting inundation using a convolutional neural network (CNN) model. The hybrid DT-RFE–CNN model was trained and tested over a region in southeastern North Carolina during Hurricane Florence on September 18, 2018, using PolSAR features derived from the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR). In terms of flood-mapping efficacy, the DT-RFE–CNN model outperformed a CNN model that used only PolSAR data across all metrics in both the training and testing stages. The performance of the trained DT-RFE–CNN model was evaluated by testing it over the same region for four more days (September 19, 20, 22, and 23, 2018); it achieved an average accuracy, precision, recall, F1 score, and intersection-over-union of 0.9304, 0.9089, 0.9584, 0.9324, and 0.8738, respectively outperforming both the classical Otsu method and the FT-Transformer model using features selected by DT-RFE. Finally, we assessed the model’s generalizability by mapping another significant flood event, caused by Hurricane Harvey in Texas between August and September 2017. Based on the results, the hybrid model can accurately detect flooding, even in regions on which it has not been trained. Thus, the proposed method can facilitate flood monitoring and response efforts.\",\"PeriodicalId\":12761,\"journal\":{\"name\":\"Gondwana Research\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gondwana Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1016/j.gr.2025.06.022\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gondwana Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.gr.2025.06.022","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Flood detection using PolSAR decomposition, feature selection, and deep learning
Accurate identification of inundated areas is crucial for mitigating the impacts of flooding, which causes numerous casualties and significant economic losses. While polarimetric synthetic aperture radar (PolSAR) data have been utilized to detect inundated regions, the information contained within PolSAR features remains severely underutilized. We introduce a novel approach that involves extracting a large number of PolSAR features through various PolSAR decomposition techniques, selecting the most important ones using the decision tree–recursive feature elimination (DT-RFE) method, and ultimately detecting inundation using a convolutional neural network (CNN) model. The hybrid DT-RFE–CNN model was trained and tested over a region in southeastern North Carolina during Hurricane Florence on September 18, 2018, using PolSAR features derived from the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR). In terms of flood-mapping efficacy, the DT-RFE–CNN model outperformed a CNN model that used only PolSAR data across all metrics in both the training and testing stages. The performance of the trained DT-RFE–CNN model was evaluated by testing it over the same region for four more days (September 19, 20, 22, and 23, 2018); it achieved an average accuracy, precision, recall, F1 score, and intersection-over-union of 0.9304, 0.9089, 0.9584, 0.9324, and 0.8738, respectively outperforming both the classical Otsu method and the FT-Transformer model using features selected by DT-RFE. Finally, we assessed the model’s generalizability by mapping another significant flood event, caused by Hurricane Harvey in Texas between August and September 2017. Based on the results, the hybrid model can accurately detect flooding, even in regions on which it has not been trained. Thus, the proposed method can facilitate flood monitoring and response efforts.
期刊介绍:
Gondwana Research (GR) is an International Journal aimed to promote high quality research publications on all topics related to solid Earth, particularly with reference to the origin and evolution of continents, continental assemblies and their resources. GR is an "all earth science" journal with no restrictions on geological time, terrane or theme and covers a wide spectrum of topics in geosciences such as geology, geomorphology, palaeontology, structure, petrology, geochemistry, stable isotopes, geochronology, economic geology, exploration geology, engineering geology, geophysics, and environmental geology among other themes, and provides an appropriate forum to integrate studies from different disciplines and different terrains. In addition to regular articles and thematic issues, the journal invites high profile state-of-the-art reviews on thrust area topics for its column, ''GR FOCUS''. Focus articles include short biographies and photographs of the authors. Short articles (within ten printed pages) for rapid publication reporting important discoveries or innovative models of global interest will be considered under the category ''GR LETTERS''.