Ben Ingram , Muhammad Ashraful Habib , Sarah E. Johnson-Beebout , Cecilia Acuin , Ron Corstanje , Robert W. Simmons , Guy J.D. Kirk
{"title":"旱作水稻与灌溉水稻的砷污染","authors":"Ben Ingram , Muhammad Ashraful Habib , Sarah E. Johnson-Beebout , Cecilia Acuin , Ron Corstanje , Robert W. Simmons , Guy J.D. Kirk","doi":"10.1016/j.envpol.2025.126856","DOIUrl":null,"url":null,"abstract":"<div><div>Arsenic (As) contamination of rice remains a major human health issue in Asia. Most research has been on irrigated rice. However much of the projected increase in global rice demand over coming decades must be met by rainfed lowland systems, for which As relations are poorly understood. We present the most comprehensive survey to date of As in rice in farmers’ fields across Bangladesh, covering both irrigated and rainfed systems. We collected rice grain and soil at 943 sites in the three rice growing seasons: irrigated Boro, rainfed Aus, and longer-duration rainfed Aman. Grain As concentrations increased in the order Aman ≪ Boro < Aus with 2, 25 and 41 % of the sites exceeding permitted thresholds, respectively. The greater concentration in Aus than Boro challenges the accepted wisdom that contaminated irrigation water is the main source of As. The main growth and grain filling periods, when most As is taken up, coincide in Aus with the peak of the monsoon rains, suggesting a link between rainfall and high grain As. We suggest this is due to stronger soil reducing conditions and hence As solubility during peak rainfall. We discuss implications for rainfed lowland rice across Asia and mitigation options.</div></div>","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"383 ","pages":"Article 126856"},"PeriodicalIF":7.6000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arsenic contamination of rainfed versus irrigated rice\",\"authors\":\"Ben Ingram , Muhammad Ashraful Habib , Sarah E. Johnson-Beebout , Cecilia Acuin , Ron Corstanje , Robert W. Simmons , Guy J.D. Kirk\",\"doi\":\"10.1016/j.envpol.2025.126856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Arsenic (As) contamination of rice remains a major human health issue in Asia. Most research has been on irrigated rice. However much of the projected increase in global rice demand over coming decades must be met by rainfed lowland systems, for which As relations are poorly understood. We present the most comprehensive survey to date of As in rice in farmers’ fields across Bangladesh, covering both irrigated and rainfed systems. We collected rice grain and soil at 943 sites in the three rice growing seasons: irrigated Boro, rainfed Aus, and longer-duration rainfed Aman. Grain As concentrations increased in the order Aman ≪ Boro < Aus with 2, 25 and 41 % of the sites exceeding permitted thresholds, respectively. The greater concentration in Aus than Boro challenges the accepted wisdom that contaminated irrigation water is the main source of As. The main growth and grain filling periods, when most As is taken up, coincide in Aus with the peak of the monsoon rains, suggesting a link between rainfall and high grain As. We suggest this is due to stronger soil reducing conditions and hence As solubility during peak rainfall. We discuss implications for rainfed lowland rice across Asia and mitigation options.</div></div>\",\"PeriodicalId\":311,\"journal\":{\"name\":\"Environmental Pollution\",\"volume\":\"383 \",\"pages\":\"Article 126856\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Pollution\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0269749125012291\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0269749125012291","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Arsenic contamination of rainfed versus irrigated rice
Arsenic (As) contamination of rice remains a major human health issue in Asia. Most research has been on irrigated rice. However much of the projected increase in global rice demand over coming decades must be met by rainfed lowland systems, for which As relations are poorly understood. We present the most comprehensive survey to date of As in rice in farmers’ fields across Bangladesh, covering both irrigated and rainfed systems. We collected rice grain and soil at 943 sites in the three rice growing seasons: irrigated Boro, rainfed Aus, and longer-duration rainfed Aman. Grain As concentrations increased in the order Aman ≪ Boro < Aus with 2, 25 and 41 % of the sites exceeding permitted thresholds, respectively. The greater concentration in Aus than Boro challenges the accepted wisdom that contaminated irrigation water is the main source of As. The main growth and grain filling periods, when most As is taken up, coincide in Aus with the peak of the monsoon rains, suggesting a link between rainfall and high grain As. We suggest this is due to stronger soil reducing conditions and hence As solubility during peak rainfall. We discuss implications for rainfed lowland rice across Asia and mitigation options.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.