Puneet S Dhatt,Acadia Hu,Cheng Hu,Vincent Huynh,Susie Y Dai,Joshua S Yuan
{"title":"仿生分层、生态、先进、多功能的可持续包装薄膜。","authors":"Puneet S Dhatt,Acadia Hu,Cheng Hu,Vincent Huynh,Susie Y Dai,Joshua S Yuan","doi":"10.1038/s41467-025-61693-2","DOIUrl":null,"url":null,"abstract":"Plastic pollution is one of most daunting sustainability challenges. Multi-functional and biodegradable plastics are critical for both desirable end-of-life outcomes and petrochemical plastics replacement. Current bioplastics are either: short of mechanical properties, like polyhydroxybutyrate (PHB); lack room temperature biodegradability, like polylactic acid (PLA); or lack the functionality to create additional values. Here, we present the bioinspired Layered, Ecological, Advanced, and multi-Functional Film (LEAFF), for sustainable plastic packaging. This biomimetic composite, based on the structure of the natural plant leaf, synergistically improves mechanical strength while empowering PLA for rapid ambient soil biodegradability, achieving complete degradation in 5 weeks. The film is also highly transparent and water stable, and achieves high gas barrier properties to improve food shelf life and reduce waste. The biomimetic design showcases the synergistic advantage leveraged by the LEAFF's multilayer structure to enhance mechanical performance while simultaneously retaining biodegradability and achieving multifunctionality for broad applications.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"37 1","pages":"6649"},"PeriodicalIF":15.7000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biomimetic layered, ecological, advanced, multi-functional film for sustainable packaging.\",\"authors\":\"Puneet S Dhatt,Acadia Hu,Cheng Hu,Vincent Huynh,Susie Y Dai,Joshua S Yuan\",\"doi\":\"10.1038/s41467-025-61693-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plastic pollution is one of most daunting sustainability challenges. Multi-functional and biodegradable plastics are critical for both desirable end-of-life outcomes and petrochemical plastics replacement. Current bioplastics are either: short of mechanical properties, like polyhydroxybutyrate (PHB); lack room temperature biodegradability, like polylactic acid (PLA); or lack the functionality to create additional values. Here, we present the bioinspired Layered, Ecological, Advanced, and multi-Functional Film (LEAFF), for sustainable plastic packaging. This biomimetic composite, based on the structure of the natural plant leaf, synergistically improves mechanical strength while empowering PLA for rapid ambient soil biodegradability, achieving complete degradation in 5 weeks. The film is also highly transparent and water stable, and achieves high gas barrier properties to improve food shelf life and reduce waste. The biomimetic design showcases the synergistic advantage leveraged by the LEAFF's multilayer structure to enhance mechanical performance while simultaneously retaining biodegradability and achieving multifunctionality for broad applications.\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"37 1\",\"pages\":\"6649\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-61693-2\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61693-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Biomimetic layered, ecological, advanced, multi-functional film for sustainable packaging.
Plastic pollution is one of most daunting sustainability challenges. Multi-functional and biodegradable plastics are critical for both desirable end-of-life outcomes and petrochemical plastics replacement. Current bioplastics are either: short of mechanical properties, like polyhydroxybutyrate (PHB); lack room temperature biodegradability, like polylactic acid (PLA); or lack the functionality to create additional values. Here, we present the bioinspired Layered, Ecological, Advanced, and multi-Functional Film (LEAFF), for sustainable plastic packaging. This biomimetic composite, based on the structure of the natural plant leaf, synergistically improves mechanical strength while empowering PLA for rapid ambient soil biodegradability, achieving complete degradation in 5 weeks. The film is also highly transparent and water stable, and achieves high gas barrier properties to improve food shelf life and reduce waste. The biomimetic design showcases the synergistic advantage leveraged by the LEAFF's multilayer structure to enhance mechanical performance while simultaneously retaining biodegradability and achieving multifunctionality for broad applications.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.