以机器学习为导向的pyrolyyl - trna合成酶的进化,以提高各种非规范氨基酸的结合效率。

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Qunfeng Zhang,Ling Jiang,Yadan Niu,Yujie Li,Wanyi Chen,Jingxi Cheng,Haote Ding,Binbin Chen,Ke Liu,Jiawen Cao,Junli Wang,Shilin Ye,Lirong Yang,Jianping Wu,Gang Xu,Jianping Lin,Haoran Yu
{"title":"以机器学习为导向的pyrolyyl - trna合成酶的进化,以提高各种非规范氨基酸的结合效率。","authors":"Qunfeng Zhang,Ling Jiang,Yadan Niu,Yujie Li,Wanyi Chen,Jingxi Cheng,Haote Ding,Binbin Chen,Ke Liu,Jiawen Cao,Junli Wang,Shilin Ye,Lirong Yang,Jianping Wu,Gang Xu,Jianping Lin,Haoran Yu","doi":"10.1038/s41467-025-61952-2","DOIUrl":null,"url":null,"abstract":"The pyrrolysyl-tRNA synthetase (PylRS) is widely used to incorporate noncanonical amino acids (ncAAs) into proteins. However, the yields of most ncAA-containing protein remain low due to the limited activity of PylRS variants. Here, we apply machine learning to engineer the tRNA-binding domain of PylRS. The FFT-PLSR model is first applied to explore pairwise combinations of 12 single mutations, generating a variant Com1-IFRS with an 11-fold increase in stop codon suppression (SCS) efficiency. Deep learning models ESM-1v, Mutcompute, and ProRefiner are then used to identify additional mutation sites. Applying FFT-PLSR on these sites yields a variant Com2-IFRS showing a 30.8-fold increase in SCS efficiency, and up to 7.8-fold improvement in the catalytic efficiency (kcat/KmtRNA). Transplanting these mutations into 7 PylRS-derived synthetases significantly improves the yields of proteins containing 6 types of ncAAs. This paper presents improved PylRS variants and a machine learning framework for optimizing the enzyme activity.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"14 1","pages":"6648"},"PeriodicalIF":14.7000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning-guided evolution of pyrrolysyl-tRNA synthetase for improved incorporation efficiency of diverse noncanonical amino acids.\",\"authors\":\"Qunfeng Zhang,Ling Jiang,Yadan Niu,Yujie Li,Wanyi Chen,Jingxi Cheng,Haote Ding,Binbin Chen,Ke Liu,Jiawen Cao,Junli Wang,Shilin Ye,Lirong Yang,Jianping Wu,Gang Xu,Jianping Lin,Haoran Yu\",\"doi\":\"10.1038/s41467-025-61952-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The pyrrolysyl-tRNA synthetase (PylRS) is widely used to incorporate noncanonical amino acids (ncAAs) into proteins. However, the yields of most ncAA-containing protein remain low due to the limited activity of PylRS variants. Here, we apply machine learning to engineer the tRNA-binding domain of PylRS. The FFT-PLSR model is first applied to explore pairwise combinations of 12 single mutations, generating a variant Com1-IFRS with an 11-fold increase in stop codon suppression (SCS) efficiency. Deep learning models ESM-1v, Mutcompute, and ProRefiner are then used to identify additional mutation sites. Applying FFT-PLSR on these sites yields a variant Com2-IFRS showing a 30.8-fold increase in SCS efficiency, and up to 7.8-fold improvement in the catalytic efficiency (kcat/KmtRNA). Transplanting these mutations into 7 PylRS-derived synthetases significantly improves the yields of proteins containing 6 types of ncAAs. This paper presents improved PylRS variants and a machine learning framework for optimizing the enzyme activity.\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"14 1\",\"pages\":\"6648\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2025-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-61952-2\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61952-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

pyrolyyl - trna合成酶(PylRS)被广泛用于将非规范氨基酸(ncAAs)整合到蛋白质中。然而,由于PylRS变异的活性有限,大多数含ncaa的蛋白的产量仍然很低。在这里,我们应用机器学习来设计PylRS的trna结合域。FFT-PLSR模型首先用于探索12个单突变的成对组合,产生一个Com1-IFRS变体,其停止密码子抑制(SCS)效率提高了11倍。然后使用深度学习模型ESM-1v、Mutcompute和ProRefiner来识别其他突变位点。在这些位点上应用FFT-PLSR会产生Com2-IFRS变体,显示SCS效率提高30.8倍,催化效率(kcat/KmtRNA)提高7.8倍。将这些突变移植到7种pylrs衍生的合成酶中,可以显著提高含有6种ncaa的蛋白质的产量。本文提出了改进的PylRS变体和优化酶活性的机器学习框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning-guided evolution of pyrrolysyl-tRNA synthetase for improved incorporation efficiency of diverse noncanonical amino acids.
The pyrrolysyl-tRNA synthetase (PylRS) is widely used to incorporate noncanonical amino acids (ncAAs) into proteins. However, the yields of most ncAA-containing protein remain low due to the limited activity of PylRS variants. Here, we apply machine learning to engineer the tRNA-binding domain of PylRS. The FFT-PLSR model is first applied to explore pairwise combinations of 12 single mutations, generating a variant Com1-IFRS with an 11-fold increase in stop codon suppression (SCS) efficiency. Deep learning models ESM-1v, Mutcompute, and ProRefiner are then used to identify additional mutation sites. Applying FFT-PLSR on these sites yields a variant Com2-IFRS showing a 30.8-fold increase in SCS efficiency, and up to 7.8-fold improvement in the catalytic efficiency (kcat/KmtRNA). Transplanting these mutations into 7 PylRS-derived synthetases significantly improves the yields of proteins containing 6 types of ncAAs. This paper presents improved PylRS variants and a machine learning framework for optimizing the enzyme activity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信