{"title":"用位错方案操纵近红外相位的通用和通用太赫兹场操纵机制。","authors":"Qinggang Lin,Fu Feng,Xuanke Zeng,Yi Cai,Wenzhao He,Congying Wang,Kaipeng Wu,Xiaowei Lu,Hongmei Zhong,Shixiang Xu,Jingzhen Li,Xiaocong Yuan","doi":"10.1038/s41467-025-61935-3","DOIUrl":null,"url":null,"abstract":"This paper presents a universal and versatile terahertz (THz) wavefront-phase manipulation by manipulating the two-dimensional phases of the near-infrared pulses. The near-infrared manipulation enables independent controls of two kinds of wavefront-phases with a two-dimensional phase modulator along two orthogonal directions. An implementation strategy of the near-infrared manipulation is further introduced by a dislocation scheme including two plates with conjugated-phase functions to output two collinear pulses with orthogonal polarizations and conjugated modulated phases. The manipulated phases can be converted to THz region by type-II phase-matched difference frequency conversion. A proof-of-principle experiment has confirmed the flexible and multiple near-infrared wavefront-phase manipulation and the conversion to THz region via dynamically generating and controlling THz vortex, Bessel, and vortex-Bessel fields with tunable topological charge and \"diffraction-free\" propagation distance. This work provides a powerful wavefront-phase manipulation, particularly in spectral regions where direct phase manipulation is technically challenging, e.g. in THz region.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"153 1","pages":"6656"},"PeriodicalIF":15.7000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A universal and versatile terahertz field manipulation mechanism by manipulating near-infrared phases with a dislocation scheme.\",\"authors\":\"Qinggang Lin,Fu Feng,Xuanke Zeng,Yi Cai,Wenzhao He,Congying Wang,Kaipeng Wu,Xiaowei Lu,Hongmei Zhong,Shixiang Xu,Jingzhen Li,Xiaocong Yuan\",\"doi\":\"10.1038/s41467-025-61935-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a universal and versatile terahertz (THz) wavefront-phase manipulation by manipulating the two-dimensional phases of the near-infrared pulses. The near-infrared manipulation enables independent controls of two kinds of wavefront-phases with a two-dimensional phase modulator along two orthogonal directions. An implementation strategy of the near-infrared manipulation is further introduced by a dislocation scheme including two plates with conjugated-phase functions to output two collinear pulses with orthogonal polarizations and conjugated modulated phases. The manipulated phases can be converted to THz region by type-II phase-matched difference frequency conversion. A proof-of-principle experiment has confirmed the flexible and multiple near-infrared wavefront-phase manipulation and the conversion to THz region via dynamically generating and controlling THz vortex, Bessel, and vortex-Bessel fields with tunable topological charge and \\\"diffraction-free\\\" propagation distance. This work provides a powerful wavefront-phase manipulation, particularly in spectral regions where direct phase manipulation is technically challenging, e.g. in THz region.\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"153 1\",\"pages\":\"6656\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-61935-3\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61935-3","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
A universal and versatile terahertz field manipulation mechanism by manipulating near-infrared phases with a dislocation scheme.
This paper presents a universal and versatile terahertz (THz) wavefront-phase manipulation by manipulating the two-dimensional phases of the near-infrared pulses. The near-infrared manipulation enables independent controls of two kinds of wavefront-phases with a two-dimensional phase modulator along two orthogonal directions. An implementation strategy of the near-infrared manipulation is further introduced by a dislocation scheme including two plates with conjugated-phase functions to output two collinear pulses with orthogonal polarizations and conjugated modulated phases. The manipulated phases can be converted to THz region by type-II phase-matched difference frequency conversion. A proof-of-principle experiment has confirmed the flexible and multiple near-infrared wavefront-phase manipulation and the conversion to THz region via dynamically generating and controlling THz vortex, Bessel, and vortex-Bessel fields with tunable topological charge and "diffraction-free" propagation distance. This work provides a powerful wavefront-phase manipulation, particularly in spectral regions where direct phase manipulation is technically challenging, e.g. in THz region.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.