John D Olson, George W Schaaf, J Daniel Bourland, J Mark Cline
{"title":"维克森林非人类灵长类动物辐射后期效应队列。","authors":"John D Olson, George W Schaaf, J Daniel Bourland, J Mark Cline","doi":"10.1667/RADE-25-00063.1","DOIUrl":null,"url":null,"abstract":"<p><p>Wake Forest University School of Medicine (WFUSM) hosts the Radiation Late Effects Cohort (RLEC), a unique cohort of previously irradiated rhesus monkeys gathered from multiple institutions over twenty years. Supported by the National Institutes of Health's National Institute of Allergy and Infectious Diseases (NIH/NIAID) Radiation/Nuclear program, it serves as a resource for the Centers for Medical Countermeasures against Radiation Consortium (CMCRC) and the wider biomedical research community. These animals act as a national resource for examining the long-term effects of radiation exposure. Since its establishment in 2007, the RLEC has studied 328 macaques, including 270 exposed to external beam ionizing radiation and 58 controls. Results to date reveal a multisystemic pattern of chronic illness, including metabolic disease and diabetes mellitus, hypertension, higher rates of cancers, long-term immune impairment, myocardial disease, cerebrovascular disease, low body weight, gonadal injury with reduced sex steroid output, cataracts, osteopenia, renal disease, compromised intestinal barrier function, and ongoing systemic inflammation. This summary highlights the essential aspects of the RLEC, the significant achievements of researchers using this resource, and the potential for further investigation of this unique animal population and its associated resources.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"274-282"},"PeriodicalIF":2.7000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Wake Forest Nonhuman Primate Radiation Late Effects Cohort.\",\"authors\":\"John D Olson, George W Schaaf, J Daniel Bourland, J Mark Cline\",\"doi\":\"10.1667/RADE-25-00063.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Wake Forest University School of Medicine (WFUSM) hosts the Radiation Late Effects Cohort (RLEC), a unique cohort of previously irradiated rhesus monkeys gathered from multiple institutions over twenty years. Supported by the National Institutes of Health's National Institute of Allergy and Infectious Diseases (NIH/NIAID) Radiation/Nuclear program, it serves as a resource for the Centers for Medical Countermeasures against Radiation Consortium (CMCRC) and the wider biomedical research community. These animals act as a national resource for examining the long-term effects of radiation exposure. Since its establishment in 2007, the RLEC has studied 328 macaques, including 270 exposed to external beam ionizing radiation and 58 controls. Results to date reveal a multisystemic pattern of chronic illness, including metabolic disease and diabetes mellitus, hypertension, higher rates of cancers, long-term immune impairment, myocardial disease, cerebrovascular disease, low body weight, gonadal injury with reduced sex steroid output, cataracts, osteopenia, renal disease, compromised intestinal barrier function, and ongoing systemic inflammation. This summary highlights the essential aspects of the RLEC, the significant achievements of researchers using this resource, and the potential for further investigation of this unique animal population and its associated resources.</p>\",\"PeriodicalId\":20903,\"journal\":{\"name\":\"Radiation research\",\"volume\":\" \",\"pages\":\"274-282\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiation research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1667/RADE-25-00063.1\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1667/RADE-25-00063.1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
The Wake Forest Nonhuman Primate Radiation Late Effects Cohort.
Wake Forest University School of Medicine (WFUSM) hosts the Radiation Late Effects Cohort (RLEC), a unique cohort of previously irradiated rhesus monkeys gathered from multiple institutions over twenty years. Supported by the National Institutes of Health's National Institute of Allergy and Infectious Diseases (NIH/NIAID) Radiation/Nuclear program, it serves as a resource for the Centers for Medical Countermeasures against Radiation Consortium (CMCRC) and the wider biomedical research community. These animals act as a national resource for examining the long-term effects of radiation exposure. Since its establishment in 2007, the RLEC has studied 328 macaques, including 270 exposed to external beam ionizing radiation and 58 controls. Results to date reveal a multisystemic pattern of chronic illness, including metabolic disease and diabetes mellitus, hypertension, higher rates of cancers, long-term immune impairment, myocardial disease, cerebrovascular disease, low body weight, gonadal injury with reduced sex steroid output, cataracts, osteopenia, renal disease, compromised intestinal barrier function, and ongoing systemic inflammation. This summary highlights the essential aspects of the RLEC, the significant achievements of researchers using this resource, and the potential for further investigation of this unique animal population and its associated resources.
期刊介绍:
Radiation Research publishes original articles dealing with radiation effects and related subjects in the areas of physics, chemistry, biology
and medicine, including epidemiology and translational research. The term radiation is used in its broadest sense and includes specifically
ionizing radiation and ultraviolet, visible and infrared light as well as microwaves, ultrasound and heat. Effects may be physical, chemical or
biological. Related subjects include (but are not limited to) dosimetry methods and instrumentation, isotope techniques and studies with
chemical agents contributing to the understanding of radiation effects.