利用目标检测算法自动识别岩心图像中的沉积结构。

IF 2.6 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
PLoS ONE Pub Date : 2025-07-18 eCollection Date: 2025-01-01 DOI:10.1371/journal.pone.0327738
Ammar J Abdlmutalib, Korhan Ayranci, Umair Bin Waheed, Hamad D Alhajri, James A MacEachern, Mohammed N Al-Khabbaz
{"title":"利用目标检测算法自动识别岩心图像中的沉积结构。","authors":"Ammar J Abdlmutalib, Korhan Ayranci, Umair Bin Waheed, Hamad D Alhajri, James A MacEachern, Mohammed N Al-Khabbaz","doi":"10.1371/journal.pone.0327738","DOIUrl":null,"url":null,"abstract":"<p><p>Manual interpretation of sedimentary structures in core-based analyses is critical for understanding subsurface geology but remains time-intensive, expert-dependent, and susceptible to bias. This study investigates the use of convolutional neural networks (CNNs) to automate structure identification in core images, focusing on siliciclastic deposits from deltaic, shoreface, fluvial, and lacustrine environments. Two object detection models-YOLOv4 and Faster R-CNN-were trained on annotated datasets comprising 15 sedimentary structure types. YOLOv4 achieved high precision (up to 95%) with faster training and shorter inference times (3.2 s/image) compared to Faster R-CNN (2.5 s/image) under consistent batch size and hardware conditions. Although Faster R-CNN reached a higher mean average precision (94.44%), it exhibited lower recall, particularly for frequently occurring structures. Both models faced challenges in distinguishing morphologically similar features, such as mud drapes and bioturbated media. Performance declined slightly in tests involving previously unseen datasets (Split III), indicating limitations in generalization across varied core imagery. Despite these challenges, the results demonstrate the promise of deep learning for streamlining core interpretation, reducing manual effort, and enhancing reproducibility. This study establishes a robust framework for advancing automated facies analysis in sedimentological research and geoscientific applications.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 7","pages":"e0327738"},"PeriodicalIF":2.6000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12273977/pdf/","citationCount":"0","resultStr":"{\"title\":\"Automated identification of sedimentary structures in core images using object detection algorithms.\",\"authors\":\"Ammar J Abdlmutalib, Korhan Ayranci, Umair Bin Waheed, Hamad D Alhajri, James A MacEachern, Mohammed N Al-Khabbaz\",\"doi\":\"10.1371/journal.pone.0327738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Manual interpretation of sedimentary structures in core-based analyses is critical for understanding subsurface geology but remains time-intensive, expert-dependent, and susceptible to bias. This study investigates the use of convolutional neural networks (CNNs) to automate structure identification in core images, focusing on siliciclastic deposits from deltaic, shoreface, fluvial, and lacustrine environments. Two object detection models-YOLOv4 and Faster R-CNN-were trained on annotated datasets comprising 15 sedimentary structure types. YOLOv4 achieved high precision (up to 95%) with faster training and shorter inference times (3.2 s/image) compared to Faster R-CNN (2.5 s/image) under consistent batch size and hardware conditions. Although Faster R-CNN reached a higher mean average precision (94.44%), it exhibited lower recall, particularly for frequently occurring structures. Both models faced challenges in distinguishing morphologically similar features, such as mud drapes and bioturbated media. Performance declined slightly in tests involving previously unseen datasets (Split III), indicating limitations in generalization across varied core imagery. Despite these challenges, the results demonstrate the promise of deep learning for streamlining core interpretation, reducing manual effort, and enhancing reproducibility. This study establishes a robust framework for advancing automated facies analysis in sedimentological research and geoscientific applications.</p>\",\"PeriodicalId\":20189,\"journal\":{\"name\":\"PLoS ONE\",\"volume\":\"20 7\",\"pages\":\"e0327738\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12273977/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS ONE\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pone.0327738\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0327738","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在基于岩心的分析中,人工解释沉积结构对于了解地下地质至关重要,但仍然需要耗费大量时间,依赖于专家,并且容易产生偏差。本研究研究了卷积神经网络(cnn)在岩心图像中的自动结构识别,重点研究了来自三角洲、滨面、河流和湖泊环境的硅质碎屑沉积。在包含15种沉积构造类型的带注释数据集上训练了yolov4和Faster r - cnn两种目标检测模型。在一致的批处理大小和硬件条件下,与更快的R-CNN (2.5 s/image)相比,YOLOv4以更快的训练速度和更短的推理时间(3.2 s/image)实现了高精度(高达95%)。尽管更快的R-CNN达到了更高的平均精度(94.44%),但它表现出较低的召回率,特别是对于频繁出现的结构。两种模型在区分形态相似的特征(如泥幔和生物扰动介质)方面都面临挑战。在涉及以前未见过的数据集(Split III)的测试中,性能略有下降,表明在不同核心图像的泛化方面存在局限性。尽管存在这些挑战,但研究结果表明,深度学习在简化岩心解释、减少人工劳动和提高可重复性方面有很大的前景。该研究为推进沉积学研究和地球科学应用中的自动相分析建立了一个强有力的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated identification of sedimentary structures in core images using object detection algorithms.

Manual interpretation of sedimentary structures in core-based analyses is critical for understanding subsurface geology but remains time-intensive, expert-dependent, and susceptible to bias. This study investigates the use of convolutional neural networks (CNNs) to automate structure identification in core images, focusing on siliciclastic deposits from deltaic, shoreface, fluvial, and lacustrine environments. Two object detection models-YOLOv4 and Faster R-CNN-were trained on annotated datasets comprising 15 sedimentary structure types. YOLOv4 achieved high precision (up to 95%) with faster training and shorter inference times (3.2 s/image) compared to Faster R-CNN (2.5 s/image) under consistent batch size and hardware conditions. Although Faster R-CNN reached a higher mean average precision (94.44%), it exhibited lower recall, particularly for frequently occurring structures. Both models faced challenges in distinguishing morphologically similar features, such as mud drapes and bioturbated media. Performance declined slightly in tests involving previously unseen datasets (Split III), indicating limitations in generalization across varied core imagery. Despite these challenges, the results demonstrate the promise of deep learning for streamlining core interpretation, reducing manual effort, and enhancing reproducibility. This study establishes a robust framework for advancing automated facies analysis in sedimentological research and geoscientific applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信