Junhao Huang , Bing Xue , Yanan Sun , Mengjie Zhang , Gary G. Yen
{"title":"零点神经结构搜索的有效摄动感知区分分数","authors":"Junhao Huang , Bing Xue , Yanan Sun , Mengjie Zhang , Gary G. Yen","doi":"10.1016/j.asoc.2025.113447","DOIUrl":null,"url":null,"abstract":"<div><div>Zero-cost proxies are under the spotlight of neural architecture search (NAS) lately, thanks to their low computational cost in predicting architecture performance in a training-free manner. The NASWOT score is one of the representative proxies that measures the architecture’s ability to distinguish inputs at the activation layers. However, obtaining such a score still requires considerable calculations on a large kernel matrix about input similarity. Moreover, the NASWOT score is relatively coarse-grained and provides a rough estimation of the architecture’s ability to distinguish general inputs. In this paper, to further reduce the computational complexity, we first propose a simplified NASWOT scoring term by relaxing its original matrix-based calculation into a vector-based one. More importantly, we develop a fine-grained perturbation-aware term to measure how well the architecture can distinguish between inputs and their perturbed counterparts. We propose a layer-wise score multiplication approach to combine these two scoring terms, deriving a new proxy, named efficient perturbation-aware distinguishing score (ePADS). Experiments on various NAS spaces and datasets show that ePADS consistently outperforms other zero-cost proxies in terms of both predictive reliability and efficiency. Particularly, ePADS achieves the highest ranking correlation among the advanced competitors (e.g., Kendall’s coefficient of 0.620 on NAS-Bench-201 with ImageNet-16-120 and 0.485 on NDS-ENAS), and ePADS-based random architecture search spends only 0.018 GPU days on DARTS-CIFAR to find networks with an average error rate of 2.64%.</div></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":"182 ","pages":"Article 113447"},"PeriodicalIF":7.2000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient perturbation-aware distinguishing score for zero-shot neural architecture search\",\"authors\":\"Junhao Huang , Bing Xue , Yanan Sun , Mengjie Zhang , Gary G. Yen\",\"doi\":\"10.1016/j.asoc.2025.113447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Zero-cost proxies are under the spotlight of neural architecture search (NAS) lately, thanks to their low computational cost in predicting architecture performance in a training-free manner. The NASWOT score is one of the representative proxies that measures the architecture’s ability to distinguish inputs at the activation layers. However, obtaining such a score still requires considerable calculations on a large kernel matrix about input similarity. Moreover, the NASWOT score is relatively coarse-grained and provides a rough estimation of the architecture’s ability to distinguish general inputs. In this paper, to further reduce the computational complexity, we first propose a simplified NASWOT scoring term by relaxing its original matrix-based calculation into a vector-based one. More importantly, we develop a fine-grained perturbation-aware term to measure how well the architecture can distinguish between inputs and their perturbed counterparts. We propose a layer-wise score multiplication approach to combine these two scoring terms, deriving a new proxy, named efficient perturbation-aware distinguishing score (ePADS). Experiments on various NAS spaces and datasets show that ePADS consistently outperforms other zero-cost proxies in terms of both predictive reliability and efficiency. Particularly, ePADS achieves the highest ranking correlation among the advanced competitors (e.g., Kendall’s coefficient of 0.620 on NAS-Bench-201 with ImageNet-16-120 and 0.485 on NDS-ENAS), and ePADS-based random architecture search spends only 0.018 GPU days on DARTS-CIFAR to find networks with an average error rate of 2.64%.</div></div>\",\"PeriodicalId\":50737,\"journal\":{\"name\":\"Applied Soft Computing\",\"volume\":\"182 \",\"pages\":\"Article 113447\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Soft Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1568494625007586\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568494625007586","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Efficient perturbation-aware distinguishing score for zero-shot neural architecture search
Zero-cost proxies are under the spotlight of neural architecture search (NAS) lately, thanks to their low computational cost in predicting architecture performance in a training-free manner. The NASWOT score is one of the representative proxies that measures the architecture’s ability to distinguish inputs at the activation layers. However, obtaining such a score still requires considerable calculations on a large kernel matrix about input similarity. Moreover, the NASWOT score is relatively coarse-grained and provides a rough estimation of the architecture’s ability to distinguish general inputs. In this paper, to further reduce the computational complexity, we first propose a simplified NASWOT scoring term by relaxing its original matrix-based calculation into a vector-based one. More importantly, we develop a fine-grained perturbation-aware term to measure how well the architecture can distinguish between inputs and their perturbed counterparts. We propose a layer-wise score multiplication approach to combine these two scoring terms, deriving a new proxy, named efficient perturbation-aware distinguishing score (ePADS). Experiments on various NAS spaces and datasets show that ePADS consistently outperforms other zero-cost proxies in terms of both predictive reliability and efficiency. Particularly, ePADS achieves the highest ranking correlation among the advanced competitors (e.g., Kendall’s coefficient of 0.620 on NAS-Bench-201 with ImageNet-16-120 and 0.485 on NDS-ENAS), and ePADS-based random architecture search spends only 0.018 GPU days on DARTS-CIFAR to find networks with an average error rate of 2.64%.
期刊介绍:
Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities.
Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.