研究环腈在气相中的弱偶极相互作用:分子稳定性和反应性的理论观点

IF 2.4 3区 化学 Q4 CHEMISTRY, PHYSICAL
Giridhar Baburao, Pranab Chandra Kayal, Gopi Ragupathy
{"title":"研究环腈在气相中的弱偶极相互作用:分子稳定性和反应性的理论观点","authors":"Giridhar Baburao,&nbsp;Pranab Chandra Kayal,&nbsp;Gopi Ragupathy","doi":"10.1016/j.chemphys.2025.112831","DOIUrl":null,"url":null,"abstract":"<div><div>We investigated hydrogen bonding interactions between cyclic nitriles (C<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>H<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>CN, C<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>H<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>CN, C<span><math><msub><mrow></mrow><mrow><mn>5</mn></mrow></msub></math></span>H<span><math><msub><mrow></mrow><mrow><mn>5</mn></mrow></msub></math></span>CN, C<span><math><msub><mrow></mrow><mrow><mn>6</mn></mrow></msub></math></span>H<span><math><msub><mrow></mrow><mrow><mn>5</mn></mrow></msub></math></span>CN, C<sub>10</sub>H<span><math><msub><mrow></mrow><mrow><mn>7</mn></mrow></msub></math></span>CN) and Lewis acids/bases (H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O, HCl, HCN, NH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, and C<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>), identifying N<span><math><mrow><mo>⋯</mo><mspace></mspace></mrow></math></span>H<span><math><mo>−</mo></math></span>O, N<span><math><mrow><mo>⋯</mo><mspace></mspace></mrow></math></span>H<span><math><mo>−</mo></math></span>Cl, N<span><math><mrow><mo>⋯</mo><mspace></mspace></mrow></math></span>H<span><math><mo>−</mo></math></span>C, and N<span><math><mrow><mo>⋯</mo><mspace></mspace></mrow></math></span>H<span><math><mo>−</mo></math></span>N bonds, with nitriles acting as proton acceptors. Among the proton donors, HCl exhibited the strongest interactions due to its highly acidic proton. The bimolecular complexes formed with C<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>H<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>CN, C<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>H<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>CN, and C<span><math><msub><mrow></mrow><mrow><mn>5</mn></mrow></msub></math></span>H<span><math><msub><mrow></mrow><mrow><mn>5</mn></mrow></msub></math></span>CN showed enhanced stability, attributed to enhanced electronic effects. Notably, the nitrile molecules examined in this study also possess astrochemical significance, as they have recently been detected in the interstellar medium. A comprehensive analysis of geometrical parameters, interaction energies, vibrational frequency shifts, hyperconjugation, and electron density offered deeper insights into the nature of these interactions and the resulting structural changes. We performed Atoms in Molecules (AIM) analysis to determine electron densities [<span><math><mrow><mi>ρ</mi><mrow><mo>(</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>] and the Laplacian of electron density [<span><math><mrow><msup><mrow><mo>∇</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>ρ</mi><mrow><mo>(</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>] at bond critical point. Natural Bond Orbital (NBO) analysis was utilized to investigate charge transfer mechanisms, while Energy Decomposition Analysis (EDA) analyzed the energetic contributions to complex stability and destabilization.</div></div>","PeriodicalId":272,"journal":{"name":"Chemical Physics","volume":"599 ","pages":"Article 112831"},"PeriodicalIF":2.4000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating weak dipole interactions of cyclic nitriles in the gas phase: Theoretical views on molecular stability and reactivity\",\"authors\":\"Giridhar Baburao,&nbsp;Pranab Chandra Kayal,&nbsp;Gopi Ragupathy\",\"doi\":\"10.1016/j.chemphys.2025.112831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigated hydrogen bonding interactions between cyclic nitriles (C<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>H<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>CN, C<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>H<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>CN, C<span><math><msub><mrow></mrow><mrow><mn>5</mn></mrow></msub></math></span>H<span><math><msub><mrow></mrow><mrow><mn>5</mn></mrow></msub></math></span>CN, C<span><math><msub><mrow></mrow><mrow><mn>6</mn></mrow></msub></math></span>H<span><math><msub><mrow></mrow><mrow><mn>5</mn></mrow></msub></math></span>CN, C<sub>10</sub>H<span><math><msub><mrow></mrow><mrow><mn>7</mn></mrow></msub></math></span>CN) and Lewis acids/bases (H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O, HCl, HCN, NH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, and C<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>), identifying N<span><math><mrow><mo>⋯</mo><mspace></mspace></mrow></math></span>H<span><math><mo>−</mo></math></span>O, N<span><math><mrow><mo>⋯</mo><mspace></mspace></mrow></math></span>H<span><math><mo>−</mo></math></span>Cl, N<span><math><mrow><mo>⋯</mo><mspace></mspace></mrow></math></span>H<span><math><mo>−</mo></math></span>C, and N<span><math><mrow><mo>⋯</mo><mspace></mspace></mrow></math></span>H<span><math><mo>−</mo></math></span>N bonds, with nitriles acting as proton acceptors. Among the proton donors, HCl exhibited the strongest interactions due to its highly acidic proton. The bimolecular complexes formed with C<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>H<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>CN, C<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>H<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>CN, and C<span><math><msub><mrow></mrow><mrow><mn>5</mn></mrow></msub></math></span>H<span><math><msub><mrow></mrow><mrow><mn>5</mn></mrow></msub></math></span>CN showed enhanced stability, attributed to enhanced electronic effects. Notably, the nitrile molecules examined in this study also possess astrochemical significance, as they have recently been detected in the interstellar medium. A comprehensive analysis of geometrical parameters, interaction energies, vibrational frequency shifts, hyperconjugation, and electron density offered deeper insights into the nature of these interactions and the resulting structural changes. We performed Atoms in Molecules (AIM) analysis to determine electron densities [<span><math><mrow><mi>ρ</mi><mrow><mo>(</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>] and the Laplacian of electron density [<span><math><mrow><msup><mrow><mo>∇</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>ρ</mi><mrow><mo>(</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>] at bond critical point. Natural Bond Orbital (NBO) analysis was utilized to investigate charge transfer mechanisms, while Energy Decomposition Analysis (EDA) analyzed the energetic contributions to complex stability and destabilization.</div></div>\",\"PeriodicalId\":272,\"journal\":{\"name\":\"Chemical Physics\",\"volume\":\"599 \",\"pages\":\"Article 112831\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301010425002320\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301010425002320","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了环腈(C3H3CN、C4H3CN、C5H5CN、C6H5CN、C10H7CN)和路易斯酸/碱(H2O、HCl、HCN、NH3和C2H2)之间的氢键相互作用,确定了N⋯H−O、N⋯H−Cl、N⋯H−C和N⋯H−N键,其中腈作为质子受体。在质子供体中,HCl由于其高酸性质子而表现出最强的相互作用。C3H3CN、C4H3CN和C5H5CN形成的双分子配合物由于电子效应增强,稳定性增强。值得注意的是,在这项研究中检测的腈分子也具有天体化学意义,因为它们最近在星际介质中被检测到。对几何参数、相互作用能量、振动频移、超共轭和电子密度的综合分析,为这些相互作用的本质和由此产生的结构变化提供了更深入的见解。我们进行了分子原子(AIM)分析,确定了键临界点处的电子密度[ρ(rc)]和电子密度[∇2ρ(rc)]的拉普拉斯函数。利用自然键轨道(NBO)分析电荷转移机制,利用能量分解分析(EDA)分析复合物稳定性和不稳定性的能量贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Investigating weak dipole interactions of cyclic nitriles in the gas phase: Theoretical views on molecular stability and reactivity

Investigating weak dipole interactions of cyclic nitriles in the gas phase: Theoretical views on molecular stability and reactivity
We investigated hydrogen bonding interactions between cyclic nitriles (C3H3CN, C4H3CN, C5H5CN, C6H5CN, C10H7CN) and Lewis acids/bases (H2O, HCl, HCN, NH3, and C2H2), identifying NHO, NHCl, NHC, and NHN bonds, with nitriles acting as proton acceptors. Among the proton donors, HCl exhibited the strongest interactions due to its highly acidic proton. The bimolecular complexes formed with C3H3CN, C4H3CN, and C5H5CN showed enhanced stability, attributed to enhanced electronic effects. Notably, the nitrile molecules examined in this study also possess astrochemical significance, as they have recently been detected in the interstellar medium. A comprehensive analysis of geometrical parameters, interaction energies, vibrational frequency shifts, hyperconjugation, and electron density offered deeper insights into the nature of these interactions and the resulting structural changes. We performed Atoms in Molecules (AIM) analysis to determine electron densities [ρ(rc)] and the Laplacian of electron density [2ρ(rc)] at bond critical point. Natural Bond Orbital (NBO) analysis was utilized to investigate charge transfer mechanisms, while Energy Decomposition Analysis (EDA) analyzed the energetic contributions to complex stability and destabilization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Physics
Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
4.30%
发文量
278
审稿时长
39 days
期刊介绍: Chemical Physics publishes experimental and theoretical papers on all aspects of chemical physics. In this journal, experiments are related to theory, and in turn theoretical papers are related to present or future experiments. Subjects covered include: spectroscopy and molecular structure, interacting systems, relaxation phenomena, biological systems, materials, fundamental problems in molecular reactivity, molecular quantum theory and statistical mechanics. Computational chemistry studies of routine character are not appropriate for this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信