{"title":"研究环腈在气相中的弱偶极相互作用:分子稳定性和反应性的理论观点","authors":"Giridhar Baburao, Pranab Chandra Kayal, Gopi Ragupathy","doi":"10.1016/j.chemphys.2025.112831","DOIUrl":null,"url":null,"abstract":"<div><div>We investigated hydrogen bonding interactions between cyclic nitriles (C<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>H<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>CN, C<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>H<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>CN, C<span><math><msub><mrow></mrow><mrow><mn>5</mn></mrow></msub></math></span>H<span><math><msub><mrow></mrow><mrow><mn>5</mn></mrow></msub></math></span>CN, C<span><math><msub><mrow></mrow><mrow><mn>6</mn></mrow></msub></math></span>H<span><math><msub><mrow></mrow><mrow><mn>5</mn></mrow></msub></math></span>CN, C<sub>10</sub>H<span><math><msub><mrow></mrow><mrow><mn>7</mn></mrow></msub></math></span>CN) and Lewis acids/bases (H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O, HCl, HCN, NH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, and C<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>), identifying N<span><math><mrow><mo>⋯</mo><mspace></mspace></mrow></math></span>H<span><math><mo>−</mo></math></span>O, N<span><math><mrow><mo>⋯</mo><mspace></mspace></mrow></math></span>H<span><math><mo>−</mo></math></span>Cl, N<span><math><mrow><mo>⋯</mo><mspace></mspace></mrow></math></span>H<span><math><mo>−</mo></math></span>C, and N<span><math><mrow><mo>⋯</mo><mspace></mspace></mrow></math></span>H<span><math><mo>−</mo></math></span>N bonds, with nitriles acting as proton acceptors. Among the proton donors, HCl exhibited the strongest interactions due to its highly acidic proton. The bimolecular complexes formed with C<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>H<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>CN, C<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>H<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>CN, and C<span><math><msub><mrow></mrow><mrow><mn>5</mn></mrow></msub></math></span>H<span><math><msub><mrow></mrow><mrow><mn>5</mn></mrow></msub></math></span>CN showed enhanced stability, attributed to enhanced electronic effects. Notably, the nitrile molecules examined in this study also possess astrochemical significance, as they have recently been detected in the interstellar medium. A comprehensive analysis of geometrical parameters, interaction energies, vibrational frequency shifts, hyperconjugation, and electron density offered deeper insights into the nature of these interactions and the resulting structural changes. We performed Atoms in Molecules (AIM) analysis to determine electron densities [<span><math><mrow><mi>ρ</mi><mrow><mo>(</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>] and the Laplacian of electron density [<span><math><mrow><msup><mrow><mo>∇</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>ρ</mi><mrow><mo>(</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>] at bond critical point. Natural Bond Orbital (NBO) analysis was utilized to investigate charge transfer mechanisms, while Energy Decomposition Analysis (EDA) analyzed the energetic contributions to complex stability and destabilization.</div></div>","PeriodicalId":272,"journal":{"name":"Chemical Physics","volume":"599 ","pages":"Article 112831"},"PeriodicalIF":2.4000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating weak dipole interactions of cyclic nitriles in the gas phase: Theoretical views on molecular stability and reactivity\",\"authors\":\"Giridhar Baburao, Pranab Chandra Kayal, Gopi Ragupathy\",\"doi\":\"10.1016/j.chemphys.2025.112831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigated hydrogen bonding interactions between cyclic nitriles (C<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>H<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>CN, C<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>H<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>CN, C<span><math><msub><mrow></mrow><mrow><mn>5</mn></mrow></msub></math></span>H<span><math><msub><mrow></mrow><mrow><mn>5</mn></mrow></msub></math></span>CN, C<span><math><msub><mrow></mrow><mrow><mn>6</mn></mrow></msub></math></span>H<span><math><msub><mrow></mrow><mrow><mn>5</mn></mrow></msub></math></span>CN, C<sub>10</sub>H<span><math><msub><mrow></mrow><mrow><mn>7</mn></mrow></msub></math></span>CN) and Lewis acids/bases (H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O, HCl, HCN, NH<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, and C<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>), identifying N<span><math><mrow><mo>⋯</mo><mspace></mspace></mrow></math></span>H<span><math><mo>−</mo></math></span>O, N<span><math><mrow><mo>⋯</mo><mspace></mspace></mrow></math></span>H<span><math><mo>−</mo></math></span>Cl, N<span><math><mrow><mo>⋯</mo><mspace></mspace></mrow></math></span>H<span><math><mo>−</mo></math></span>C, and N<span><math><mrow><mo>⋯</mo><mspace></mspace></mrow></math></span>H<span><math><mo>−</mo></math></span>N bonds, with nitriles acting as proton acceptors. Among the proton donors, HCl exhibited the strongest interactions due to its highly acidic proton. The bimolecular complexes formed with C<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>H<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>CN, C<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>H<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>CN, and C<span><math><msub><mrow></mrow><mrow><mn>5</mn></mrow></msub></math></span>H<span><math><msub><mrow></mrow><mrow><mn>5</mn></mrow></msub></math></span>CN showed enhanced stability, attributed to enhanced electronic effects. Notably, the nitrile molecules examined in this study also possess astrochemical significance, as they have recently been detected in the interstellar medium. A comprehensive analysis of geometrical parameters, interaction energies, vibrational frequency shifts, hyperconjugation, and electron density offered deeper insights into the nature of these interactions and the resulting structural changes. We performed Atoms in Molecules (AIM) analysis to determine electron densities [<span><math><mrow><mi>ρ</mi><mrow><mo>(</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>] and the Laplacian of electron density [<span><math><mrow><msup><mrow><mo>∇</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>ρ</mi><mrow><mo>(</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>] at bond critical point. Natural Bond Orbital (NBO) analysis was utilized to investigate charge transfer mechanisms, while Energy Decomposition Analysis (EDA) analyzed the energetic contributions to complex stability and destabilization.</div></div>\",\"PeriodicalId\":272,\"journal\":{\"name\":\"Chemical Physics\",\"volume\":\"599 \",\"pages\":\"Article 112831\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301010425002320\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301010425002320","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Investigating weak dipole interactions of cyclic nitriles in the gas phase: Theoretical views on molecular stability and reactivity
We investigated hydrogen bonding interactions between cyclic nitriles (CHCN, CHCN, CHCN, CHCN, C10HCN) and Lewis acids/bases (HO, HCl, HCN, NH, and CH), identifying NHO, NHCl, NHC, and NHN bonds, with nitriles acting as proton acceptors. Among the proton donors, HCl exhibited the strongest interactions due to its highly acidic proton. The bimolecular complexes formed with CHCN, CHCN, and CHCN showed enhanced stability, attributed to enhanced electronic effects. Notably, the nitrile molecules examined in this study also possess astrochemical significance, as they have recently been detected in the interstellar medium. A comprehensive analysis of geometrical parameters, interaction energies, vibrational frequency shifts, hyperconjugation, and electron density offered deeper insights into the nature of these interactions and the resulting structural changes. We performed Atoms in Molecules (AIM) analysis to determine electron densities [] and the Laplacian of electron density [] at bond critical point. Natural Bond Orbital (NBO) analysis was utilized to investigate charge transfer mechanisms, while Energy Decomposition Analysis (EDA) analyzed the energetic contributions to complex stability and destabilization.
期刊介绍:
Chemical Physics publishes experimental and theoretical papers on all aspects of chemical physics. In this journal, experiments are related to theory, and in turn theoretical papers are related to present or future experiments. Subjects covered include: spectroscopy and molecular structure, interacting systems, relaxation phenomena, biological systems, materials, fundamental problems in molecular reactivity, molecular quantum theory and statistical mechanics. Computational chemistry studies of routine character are not appropriate for this journal.