Pingping Yuan , Shijie Zhou , Qianqian Li , Lin Li , Shaoqi Qu
{"title":"细胞外囊泡增强头孢替福抗细胞内细菌感染的功效","authors":"Pingping Yuan , Shijie Zhou , Qianqian Li , Lin Li , Shaoqi Qu","doi":"10.1016/j.synbio.2025.07.001","DOIUrl":null,"url":null,"abstract":"<div><div>Bacterial infections pose a major threat to human health and economic stability. In particular, intracellular bacterial infections present significant clinical challenges due to antibiotic resistance and poor drug penetration. Therefore, there is an urgent need to develop novel therapeutic strategies to address the problem of intracellular bacterial infections. Extracellular bacterial vesicles become ideal delivery systems due to their natural targeting properties. Here, we developed a bacteria-derived extracellular vesicles (EVs)-based drug delivery platform to enhance the therapeutic efficacy of antibiotics against intracellular infections. EVs were successfully isolated and increased production from <em>S. aureus</em> by ultracentrifugation, then loaded with ceftiofur (CEF) via co-incubation. <em>In vitro</em> tests demonstrated the potent antibacterial activity of CEF, achieving complete growth inhibition within 24 h and a 4-log viability reduction in 4 h. Furthermore, confocal microscopy revealed efficient CEV internalization in IEC-6 cells, with 12-fold greater intracellular bacterial clearance than free CEF. <em>In vivo</em>, CEV-incorporated hydrogel (CEVH) significantly reduced both intra- and extracellular bacterial loads and accelerated wound healing. These findings demonstrate that bacterial EVs serve as a universal delivery platform to significantly enhance the efficacy of existing antibiotics against intracellular infections.</div></div>","PeriodicalId":22148,"journal":{"name":"Synthetic and Systems Biotechnology","volume":"10 4","pages":"Pages 1200-1207"},"PeriodicalIF":4.4000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extracellular vesicles enhance the efficacy of ceftiofur against intracellular bacterial infections\",\"authors\":\"Pingping Yuan , Shijie Zhou , Qianqian Li , Lin Li , Shaoqi Qu\",\"doi\":\"10.1016/j.synbio.2025.07.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Bacterial infections pose a major threat to human health and economic stability. In particular, intracellular bacterial infections present significant clinical challenges due to antibiotic resistance and poor drug penetration. Therefore, there is an urgent need to develop novel therapeutic strategies to address the problem of intracellular bacterial infections. Extracellular bacterial vesicles become ideal delivery systems due to their natural targeting properties. Here, we developed a bacteria-derived extracellular vesicles (EVs)-based drug delivery platform to enhance the therapeutic efficacy of antibiotics against intracellular infections. EVs were successfully isolated and increased production from <em>S. aureus</em> by ultracentrifugation, then loaded with ceftiofur (CEF) via co-incubation. <em>In vitro</em> tests demonstrated the potent antibacterial activity of CEF, achieving complete growth inhibition within 24 h and a 4-log viability reduction in 4 h. Furthermore, confocal microscopy revealed efficient CEV internalization in IEC-6 cells, with 12-fold greater intracellular bacterial clearance than free CEF. <em>In vivo</em>, CEV-incorporated hydrogel (CEVH) significantly reduced both intra- and extracellular bacterial loads and accelerated wound healing. These findings demonstrate that bacterial EVs serve as a universal delivery platform to significantly enhance the efficacy of existing antibiotics against intracellular infections.</div></div>\",\"PeriodicalId\":22148,\"journal\":{\"name\":\"Synthetic and Systems Biotechnology\",\"volume\":\"10 4\",\"pages\":\"Pages 1200-1207\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Synthetic and Systems Biotechnology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405805X25000985\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic and Systems Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405805X25000985","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Extracellular vesicles enhance the efficacy of ceftiofur against intracellular bacterial infections
Bacterial infections pose a major threat to human health and economic stability. In particular, intracellular bacterial infections present significant clinical challenges due to antibiotic resistance and poor drug penetration. Therefore, there is an urgent need to develop novel therapeutic strategies to address the problem of intracellular bacterial infections. Extracellular bacterial vesicles become ideal delivery systems due to their natural targeting properties. Here, we developed a bacteria-derived extracellular vesicles (EVs)-based drug delivery platform to enhance the therapeutic efficacy of antibiotics against intracellular infections. EVs were successfully isolated and increased production from S. aureus by ultracentrifugation, then loaded with ceftiofur (CEF) via co-incubation. In vitro tests demonstrated the potent antibacterial activity of CEF, achieving complete growth inhibition within 24 h and a 4-log viability reduction in 4 h. Furthermore, confocal microscopy revealed efficient CEV internalization in IEC-6 cells, with 12-fold greater intracellular bacterial clearance than free CEF. In vivo, CEV-incorporated hydrogel (CEVH) significantly reduced both intra- and extracellular bacterial loads and accelerated wound healing. These findings demonstrate that bacterial EVs serve as a universal delivery platform to significantly enhance the efficacy of existing antibiotics against intracellular infections.
期刊介绍:
Synthetic and Systems Biotechnology aims to promote the communication of original research in synthetic and systems biology, with strong emphasis on applications towards biotechnology. This journal is a quarterly peer-reviewed journal led by Editor-in-Chief Lixin Zhang. The journal publishes high-quality research; focusing on integrative approaches to enable the understanding and design of biological systems, and research to develop the application of systems and synthetic biology to natural systems. This journal will publish Articles, Short notes, Methods, Mini Reviews, Commentary and Conference reviews.