Xiao Yuan , Yanping Du , Jing Su , Yu Lin , Jinwen Shi , Chao Wang
{"title":"非均相湿蒸汽通道泡沫铜的池沸研究","authors":"Xiao Yuan , Yanping Du , Jing Su , Yu Lin , Jinwen Shi , Chao Wang","doi":"10.1016/j.ijthermalsci.2025.110158","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a pool boiling experimental investigation of copper foam microchannels with engineered heterogeneous wettability conducted under atmospheric conditions. Copper foam microchannels with spatially varied wetting properties were fabricated using immersion and welding methods. Two specific configurations were developed: one featuring super hydrophilic channel walls with a super hydrophobic bottom surface (SHPiW–SHPoB), and the other comprising superhydrophobic walls combined with a super hydrophilic bottom surface (SHPoW–SHPiB). By experiments, the effects of wettability heterogeneity on boiling heat transfer performance were systematically evaluated. It is found that the SHPiW–SHPoB configuration demonstrates a superior critical heat flux (CHF) of 108.2 W/cm<sup>2</sup>, compared to 96.7 W/cm<sup>2</sup> for the SHPoW–SHPiB. Further experimental results show that the SHPiW–SHPoB configuration offers significantly improved pool boiling characteristics, indicating the potential of the wettability patterning for advanced thermal management of energy systems. The experiments suggest that the enhanced boiling performance of the SHPiW–SHPoB is attributed to the efficient separation of vapor and liquid flow paths enabled by the heterogeneous wetting design, which promotes bubble nucleation at low heat fluxes and suppresses bubble coalescence at high heat fluxes.</div></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"218 ","pages":"Article 110158"},"PeriodicalIF":4.9000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pool boiling investigation on copper foam with heterogeneous wetting vapor channels\",\"authors\":\"Xiao Yuan , Yanping Du , Jing Su , Yu Lin , Jinwen Shi , Chao Wang\",\"doi\":\"10.1016/j.ijthermalsci.2025.110158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents a pool boiling experimental investigation of copper foam microchannels with engineered heterogeneous wettability conducted under atmospheric conditions. Copper foam microchannels with spatially varied wetting properties were fabricated using immersion and welding methods. Two specific configurations were developed: one featuring super hydrophilic channel walls with a super hydrophobic bottom surface (SHPiW–SHPoB), and the other comprising superhydrophobic walls combined with a super hydrophilic bottom surface (SHPoW–SHPiB). By experiments, the effects of wettability heterogeneity on boiling heat transfer performance were systematically evaluated. It is found that the SHPiW–SHPoB configuration demonstrates a superior critical heat flux (CHF) of 108.2 W/cm<sup>2</sup>, compared to 96.7 W/cm<sup>2</sup> for the SHPoW–SHPiB. Further experimental results show that the SHPiW–SHPoB configuration offers significantly improved pool boiling characteristics, indicating the potential of the wettability patterning for advanced thermal management of energy systems. The experiments suggest that the enhanced boiling performance of the SHPiW–SHPoB is attributed to the efficient separation of vapor and liquid flow paths enabled by the heterogeneous wetting design, which promotes bubble nucleation at low heat fluxes and suppresses bubble coalescence at high heat fluxes.</div></div>\",\"PeriodicalId\":341,\"journal\":{\"name\":\"International Journal of Thermal Sciences\",\"volume\":\"218 \",\"pages\":\"Article 110158\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermal Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1290072925004818\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072925004818","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Pool boiling investigation on copper foam with heterogeneous wetting vapor channels
This study presents a pool boiling experimental investigation of copper foam microchannels with engineered heterogeneous wettability conducted under atmospheric conditions. Copper foam microchannels with spatially varied wetting properties were fabricated using immersion and welding methods. Two specific configurations were developed: one featuring super hydrophilic channel walls with a super hydrophobic bottom surface (SHPiW–SHPoB), and the other comprising superhydrophobic walls combined with a super hydrophilic bottom surface (SHPoW–SHPiB). By experiments, the effects of wettability heterogeneity on boiling heat transfer performance were systematically evaluated. It is found that the SHPiW–SHPoB configuration demonstrates a superior critical heat flux (CHF) of 108.2 W/cm2, compared to 96.7 W/cm2 for the SHPoW–SHPiB. Further experimental results show that the SHPiW–SHPoB configuration offers significantly improved pool boiling characteristics, indicating the potential of the wettability patterning for advanced thermal management of energy systems. The experiments suggest that the enhanced boiling performance of the SHPiW–SHPoB is attributed to the efficient separation of vapor and liquid flow paths enabled by the heterogeneous wetting design, which promotes bubble nucleation at low heat fluxes and suppresses bubble coalescence at high heat fluxes.
期刊介绍:
The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review.
The fundamental subjects considered within the scope of the journal are:
* Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow
* Forced, natural or mixed convection in reactive or non-reactive media
* Single or multi–phase fluid flow with or without phase change
* Near–and far–field radiative heat transfer
* Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...)
* Multiscale modelling
The applied research topics include:
* Heat exchangers, heat pipes, cooling processes
* Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries)
* Nano–and micro–technology for energy, space, biosystems and devices
* Heat transport analysis in advanced systems
* Impact of energy–related processes on environment, and emerging energy systems
The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.