二维离焦非线性Schrödinger方程解的尖锐混合勒贝格上界

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Vo Van Au
{"title":"二维离焦非线性Schrödinger方程解的尖锐混合勒贝格上界","authors":"Vo Van Au","doi":"10.1016/j.aml.2025.109686","DOIUrl":null,"url":null,"abstract":"<div><div>In the unbounded two-dimensional domain, we study a class of nonlinear Schrödinger equations with a smooth power-type nonlinearity. We establish a novel global-in-time estimate that yields a sharp upper bound in the mixed Lebesgue space <span><math><mrow><msubsup><mrow><mi>L</mi></mrow><mrow><mi>t</mi></mrow><mrow><mn>4</mn></mrow></msubsup><msubsup><mrow><mi>L</mi></mrow><mrow><mi>x</mi></mrow><mrow><mn>8</mn></mrow></msubsup></mrow></math></span>. This work is motivated by the author’s previous results on the nonlinear Schrödinger equation, as well as by the influential work of Killip, Tao, and Visan (2009).</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"171 ","pages":"Article 109686"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a sharp mixed Lebesgue upper bound for solutions to the defocusing nonlinear Schrödinger equation in dimension two\",\"authors\":\"Vo Van Au\",\"doi\":\"10.1016/j.aml.2025.109686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the unbounded two-dimensional domain, we study a class of nonlinear Schrödinger equations with a smooth power-type nonlinearity. We establish a novel global-in-time estimate that yields a sharp upper bound in the mixed Lebesgue space <span><math><mrow><msubsup><mrow><mi>L</mi></mrow><mrow><mi>t</mi></mrow><mrow><mn>4</mn></mrow></msubsup><msubsup><mrow><mi>L</mi></mrow><mrow><mi>x</mi></mrow><mrow><mn>8</mn></mrow></msubsup></mrow></math></span>. This work is motivated by the author’s previous results on the nonlinear Schrödinger equation, as well as by the influential work of Killip, Tao, and Visan (2009).</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"171 \",\"pages\":\"Article 109686\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965925002368\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925002368","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在无界二维区域上,研究了一类具有光滑幂型非线性的非线性Schrödinger方程。我们建立了一个新的全局实时估计,在混合勒贝格空间Lt4Lx8中产生一个尖锐的上界。这项工作的动力来自于作者之前关于非线性Schrödinger方程的结果,以及Killip, Tao和Visan(2009)的有影响力的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a sharp mixed Lebesgue upper bound for solutions to the defocusing nonlinear Schrödinger equation in dimension two
In the unbounded two-dimensional domain, we study a class of nonlinear Schrödinger equations with a smooth power-type nonlinearity. We establish a novel global-in-time estimate that yields a sharp upper bound in the mixed Lebesgue space Lt4Lx8. This work is motivated by the author’s previous results on the nonlinear Schrödinger equation, as well as by the influential work of Killip, Tao, and Visan (2009).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信