{"title":"溶液处理,无粘合剂的原始Ti3C2Tx MXene电极通过MAI钝化实现高性能,可扩展的钙钛矿太阳能电池","authors":"Harit Chunlim , Manopat Depijan , Kasempong Srisawad , Tanawut Meekati , Duangmanee Wongratanaphisan , Pipat Ruankham , Pongsakorn Kanjanaboos , Pasit Pakawatpanurut","doi":"10.1016/j.apsadv.2025.100803","DOIUrl":null,"url":null,"abstract":"<div><div>While carbon electrodes offer a cost-effective option for perovskite solar cells (PSCs), their efficiency is often compromised by the insulating polymer binders required. Addressing this limitation, we demonstrate a polymer binder-free electrode using pristine Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene, applied directly onto the perovskite via a simple solution-processing technique. A major obstacle emerged: the direct interface between untreated, hydrophilic Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> and the perovskite proved unstable, causing rapid degradation. We resolved this critical issue by introducing a novel methylammonium iodide (MAI) surface treatment for Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> prior to deposition. This passivation strategy proved essential, stabilizing the interface by neutralizing reactive surface groups. PSCs utilizing these MAI-treated, binder-free Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> electrodes achieved 13.8 % power conversion efficiency, substantially exceeding carbon controls (10.7 %), primarily due to a significantly enhanced fill factor (75.2 % vs 58.2 %) and low sheet resistance. Furthermore, demonstrating practical potential, these MXene electrodes maintain performance better than carbon when the active area is scaled up. Although encapsulation is required to protect the hydrophilic MXene and ensure long-term stability (>360 h) in ambient conditions, this work charts an effective course for developing highly conductive, scalable, binder-free electrodes for advanced PSCs.</div></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"28 ","pages":"Article 100803"},"PeriodicalIF":8.7000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solution-processed, binder-free pristine Ti3C2Tx MXene electrodes enabled by MAI passivation for high-performance, scalable perovskite solar cells\",\"authors\":\"Harit Chunlim , Manopat Depijan , Kasempong Srisawad , Tanawut Meekati , Duangmanee Wongratanaphisan , Pipat Ruankham , Pongsakorn Kanjanaboos , Pasit Pakawatpanurut\",\"doi\":\"10.1016/j.apsadv.2025.100803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>While carbon electrodes offer a cost-effective option for perovskite solar cells (PSCs), their efficiency is often compromised by the insulating polymer binders required. Addressing this limitation, we demonstrate a polymer binder-free electrode using pristine Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene, applied directly onto the perovskite via a simple solution-processing technique. A major obstacle emerged: the direct interface between untreated, hydrophilic Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> and the perovskite proved unstable, causing rapid degradation. We resolved this critical issue by introducing a novel methylammonium iodide (MAI) surface treatment for Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> prior to deposition. This passivation strategy proved essential, stabilizing the interface by neutralizing reactive surface groups. PSCs utilizing these MAI-treated, binder-free Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> electrodes achieved 13.8 % power conversion efficiency, substantially exceeding carbon controls (10.7 %), primarily due to a significantly enhanced fill factor (75.2 % vs 58.2 %) and low sheet resistance. Furthermore, demonstrating practical potential, these MXene electrodes maintain performance better than carbon when the active area is scaled up. Although encapsulation is required to protect the hydrophilic MXene and ensure long-term stability (>360 h) in ambient conditions, this work charts an effective course for developing highly conductive, scalable, binder-free electrodes for advanced PSCs.</div></div>\",\"PeriodicalId\":34303,\"journal\":{\"name\":\"Applied Surface Science Advances\",\"volume\":\"28 \",\"pages\":\"Article 100803\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2025-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Surface Science Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666523925001114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666523925001114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
虽然碳电极为钙钛矿太阳能电池(PSCs)提供了一种具有成本效益的选择,但它们的效率往往受到所需绝缘聚合物粘合剂的影响。为了解决这一限制,我们展示了一种使用原始Ti3C2Tx MXene的无聚合物粘合剂电极,通过简单的溶液处理技术直接应用于钙钛矿上。一个主要的障碍出现了:未经处理的亲水性Ti3C2Tx和钙钛矿之间的直接界面被证明是不稳定的,会导致快速降解。我们通过在沉积前对Ti3C2Tx进行新型的甲基碘化铵(MAI)表面处理,解决了这一关键问题。这种钝化策略被证明是必不可少的,通过中和活性表面基团来稳定界面。使用这些经mai处理的无粘结剂Ti3C2Tx电极的psc实现了13.8%的功率转换效率,大大超过了碳控制(10.7%),这主要是由于填充系数显著提高(75.2% vs 58.2%)和低片电阻。此外,当活性区域扩大时,这些MXene电极保持比碳电极更好的性能,证明了实际潜力。虽然需要封装来保护亲水性MXene并确保在环境条件下的长期稳定性(>;360小时),但这项工作为开发用于高级psc的高导电性,可扩展,无粘合剂的电极绘制了有效的过程。
Solution-processed, binder-free pristine Ti3C2Tx MXene electrodes enabled by MAI passivation for high-performance, scalable perovskite solar cells
While carbon electrodes offer a cost-effective option for perovskite solar cells (PSCs), their efficiency is often compromised by the insulating polymer binders required. Addressing this limitation, we demonstrate a polymer binder-free electrode using pristine Ti3C2Tx MXene, applied directly onto the perovskite via a simple solution-processing technique. A major obstacle emerged: the direct interface between untreated, hydrophilic Ti3C2Tx and the perovskite proved unstable, causing rapid degradation. We resolved this critical issue by introducing a novel methylammonium iodide (MAI) surface treatment for Ti3C2Tx prior to deposition. This passivation strategy proved essential, stabilizing the interface by neutralizing reactive surface groups. PSCs utilizing these MAI-treated, binder-free Ti3C2Tx electrodes achieved 13.8 % power conversion efficiency, substantially exceeding carbon controls (10.7 %), primarily due to a significantly enhanced fill factor (75.2 % vs 58.2 %) and low sheet resistance. Furthermore, demonstrating practical potential, these MXene electrodes maintain performance better than carbon when the active area is scaled up. Although encapsulation is required to protect the hydrophilic MXene and ensure long-term stability (>360 h) in ambient conditions, this work charts an effective course for developing highly conductive, scalable, binder-free electrodes for advanced PSCs.