不确定位置薄壁件磨削去毛刺并联接触力机器人末端执行器研究

IF 3.7 2区 工程技术 Q2 ENGINEERING, MANUFACTURING
Du Xu , Haijie Mo , Zhiguo Zhong , Lairong Yin
{"title":"不确定位置薄壁件磨削去毛刺并联接触力机器人末端执行器研究","authors":"Du Xu ,&nbsp;Haijie Mo ,&nbsp;Zhiguo Zhong ,&nbsp;Lairong Yin","doi":"10.1016/j.precisioneng.2025.06.021","DOIUrl":null,"url":null,"abstract":"<div><div>This paper focuses on the force overshoot problem that occurs in the initial contact phase of a robotic end-effector, a novel passive compliant constant-force end-effector designed to address the challenge of contact force stabilization and response in robotic grinding and deburring of thin-walled parts. Unlike conventional active force control methods that suffer from force overshoot due to dynamic response limitations, the proposed solution integrates a hybrid stiffness mechanism combining positive (multi-layer bending structures) and negative (inclined beams) stiffness elements to achieve sensor-less force regulation. The design features a parallel architecture with 120° distributed limbs, ensuring coaxial force distribution and vibration suppression. A comprehensive analytical model is developed, incorporating combined stiffness theory and elliptic integrals to characterize the negative stiffness beam's buckling behavior, with parameter optimization to maximize the constant-force stroke. Finite element analysis confirms uniform stress distribution under multi-axis loading (100N force/20N·m torque), while experimental validation on magnesium-aluminum alloy workpieces demonstrates the mechanism's ability to maintain contact force within ±5 % deviation over a 4.5 mm stroke range, even with ±2 mm positional errors. The passive design eliminates the need for complex control systems, offering significant advantages in cost reduction, process adaptability through quick-change couplings, and scalability for diverse thin-wall geometries. This paper provides an insight into the potential of purely passive methods in achieving accurate and smooth force control.</div></div>","PeriodicalId":54589,"journal":{"name":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","volume":"96 ","pages":"Pages 587-599"},"PeriodicalIF":3.7000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of a parallel contact force robotic end-effector for thin-walled parts grinding and deburring with uncertain position\",\"authors\":\"Du Xu ,&nbsp;Haijie Mo ,&nbsp;Zhiguo Zhong ,&nbsp;Lairong Yin\",\"doi\":\"10.1016/j.precisioneng.2025.06.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper focuses on the force overshoot problem that occurs in the initial contact phase of a robotic end-effector, a novel passive compliant constant-force end-effector designed to address the challenge of contact force stabilization and response in robotic grinding and deburring of thin-walled parts. Unlike conventional active force control methods that suffer from force overshoot due to dynamic response limitations, the proposed solution integrates a hybrid stiffness mechanism combining positive (multi-layer bending structures) and negative (inclined beams) stiffness elements to achieve sensor-less force regulation. The design features a parallel architecture with 120° distributed limbs, ensuring coaxial force distribution and vibration suppression. A comprehensive analytical model is developed, incorporating combined stiffness theory and elliptic integrals to characterize the negative stiffness beam's buckling behavior, with parameter optimization to maximize the constant-force stroke. Finite element analysis confirms uniform stress distribution under multi-axis loading (100N force/20N·m torque), while experimental validation on magnesium-aluminum alloy workpieces demonstrates the mechanism's ability to maintain contact force within ±5 % deviation over a 4.5 mm stroke range, even with ±2 mm positional errors. The passive design eliminates the need for complex control systems, offering significant advantages in cost reduction, process adaptability through quick-change couplings, and scalability for diverse thin-wall geometries. This paper provides an insight into the potential of purely passive methods in achieving accurate and smooth force control.</div></div>\",\"PeriodicalId\":54589,\"journal\":{\"name\":\"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology\",\"volume\":\"96 \",\"pages\":\"Pages 587-599\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141635925002090\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141635925002090","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

研究了机器人末端执行器在初始接触阶段的力超调问题,该机器人末端执行器是一种新型的被动柔顺恒力末端执行器,旨在解决薄壁零件机器人磨削和去毛刺过程中接触力的稳定和响应问题。与传统的主动力控制方法由于动态响应限制而导致力超调不同,该方案集成了一种混合刚度机制,结合了正(多层弯曲结构)和负(倾斜梁)刚度单元,实现了无传感器的力调节。该设计采用120°分支分布的并联结构,保证了同轴力分布和振动抑制。建立了一个综合分析模型,结合刚度理论和椭圆积分来描述负刚度梁的屈曲行为,并对参数进行优化,以最大化恒力行程。有限元分析证实了该机构在多轴载荷(100N力/20N·m扭矩)下应力分布均匀,而在镁铝合金工件上的实验验证表明,即使在±2mm的位置误差下,该机构在4.5 mm行程范围内也能将接触力保持在±5%的偏差内。被动式设计消除了对复杂控制系统的需求,在降低成本、通过快速变化耦合的过程适应性以及各种薄壁几何形状的可扩展性方面具有显著优势。本文提供了一个深入了解的潜力,纯被动的方法,以实现准确和平稳的力控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of a parallel contact force robotic end-effector for thin-walled parts grinding and deburring with uncertain position
This paper focuses on the force overshoot problem that occurs in the initial contact phase of a robotic end-effector, a novel passive compliant constant-force end-effector designed to address the challenge of contact force stabilization and response in robotic grinding and deburring of thin-walled parts. Unlike conventional active force control methods that suffer from force overshoot due to dynamic response limitations, the proposed solution integrates a hybrid stiffness mechanism combining positive (multi-layer bending structures) and negative (inclined beams) stiffness elements to achieve sensor-less force regulation. The design features a parallel architecture with 120° distributed limbs, ensuring coaxial force distribution and vibration suppression. A comprehensive analytical model is developed, incorporating combined stiffness theory and elliptic integrals to characterize the negative stiffness beam's buckling behavior, with parameter optimization to maximize the constant-force stroke. Finite element analysis confirms uniform stress distribution under multi-axis loading (100N force/20N·m torque), while experimental validation on magnesium-aluminum alloy workpieces demonstrates the mechanism's ability to maintain contact force within ±5 % deviation over a 4.5 mm stroke range, even with ±2 mm positional errors. The passive design eliminates the need for complex control systems, offering significant advantages in cost reduction, process adaptability through quick-change couplings, and scalability for diverse thin-wall geometries. This paper provides an insight into the potential of purely passive methods in achieving accurate and smooth force control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.40
自引率
5.60%
发文量
177
审稿时长
46 days
期刊介绍: Precision Engineering - Journal of the International Societies for Precision Engineering and Nanotechnology is devoted to the multidisciplinary study and practice of high accuracy engineering, metrology, and manufacturing. The journal takes an integrated approach to all subjects related to research, design, manufacture, performance validation, and application of high precision machines, instruments, and components, including fundamental and applied research and development in manufacturing processes, fabrication technology, and advanced measurement science. The scope includes precision-engineered systems and supporting metrology over the full range of length scales, from atom-based nanotechnology and advanced lithographic technology to large-scale systems, including optical and radio telescopes and macrometrology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信