磁性生物炭核嗜盐好氧颗粒:快速形成和结构稳定性增强的新策略

IF 9.7 1区 环境科学与生态学 Q1 AGRICULTURAL ENGINEERING
Dong-Xu Zhou, You-Wei Cui, Ya-Nan Mi, Zhen-Ying Li, Rui-Chun Yang, Yuan Sui
{"title":"磁性生物炭核嗜盐好氧颗粒:快速形成和结构稳定性增强的新策略","authors":"Dong-Xu Zhou,&nbsp;You-Wei Cui,&nbsp;Ya-Nan Mi,&nbsp;Zhen-Ying Li,&nbsp;Rui-Chun Yang,&nbsp;Yuan Sui","doi":"10.1016/j.biortech.2025.132994","DOIUrl":null,"url":null,"abstract":"<div><div>Halophilic aerobic granular sludge (HAGS) effectively treats hypersaline wastewater, offering advantages of structural compactness, microbial diversity, long functional bacteria retention, and high shock tolerance. However, long start-up times and granule disintegration limit its application. This study evaluated biochar and magnetic biochar (MBC) as carriers to accelerate formation and enhance stability. MBC reduced start-up time by providing microbial attachment sites and resolved operational instability. MBC-cored HAGS exhibited higher microbial metabolic activity, increased extracellular polymeric substance secretion (critical for stability), and enhanced microbial diversity during stable operation. Crucially, MBC’s Fe<sub>3</sub>O<sub>4</sub> loading inhibited filamentous fungal overgrowth, reducing abundance from 2 × 10<sup>10</sup> (without material) to 3 × 10<sup>8</sup> copies/g dry sludge. Thus, MBC proves to be a key optimization strategy for HAGS, enabling reliable application in hypersaline wastewater treatment by accelerating granule formation and ensuring long-term stability through Fe<sub>3</sub>O<sub>4</sub>-mediated inhibition of fungal overgrowth.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"436 ","pages":"Article 132994"},"PeriodicalIF":9.7000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic biochar-cored halophilic aerobic granules: Novel strategy for rapid formation and structural stability enhancement\",\"authors\":\"Dong-Xu Zhou,&nbsp;You-Wei Cui,&nbsp;Ya-Nan Mi,&nbsp;Zhen-Ying Li,&nbsp;Rui-Chun Yang,&nbsp;Yuan Sui\",\"doi\":\"10.1016/j.biortech.2025.132994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Halophilic aerobic granular sludge (HAGS) effectively treats hypersaline wastewater, offering advantages of structural compactness, microbial diversity, long functional bacteria retention, and high shock tolerance. However, long start-up times and granule disintegration limit its application. This study evaluated biochar and magnetic biochar (MBC) as carriers to accelerate formation and enhance stability. MBC reduced start-up time by providing microbial attachment sites and resolved operational instability. MBC-cored HAGS exhibited higher microbial metabolic activity, increased extracellular polymeric substance secretion (critical for stability), and enhanced microbial diversity during stable operation. Crucially, MBC’s Fe<sub>3</sub>O<sub>4</sub> loading inhibited filamentous fungal overgrowth, reducing abundance from 2 × 10<sup>10</sup> (without material) to 3 × 10<sup>8</sup> copies/g dry sludge. Thus, MBC proves to be a key optimization strategy for HAGS, enabling reliable application in hypersaline wastewater treatment by accelerating granule formation and ensuring long-term stability through Fe<sub>3</sub>O<sub>4</sub>-mediated inhibition of fungal overgrowth.</div></div>\",\"PeriodicalId\":258,\"journal\":{\"name\":\"Bioresource Technology\",\"volume\":\"436 \",\"pages\":\"Article 132994\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresource Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960852425009605\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960852425009605","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

嗜盐好氧颗粒污泥(HAGS)可有效处理高盐废水,具有结构紧凑、微生物多样性、功能细菌保留时间长、耐冲击能力强等优点。但启动时间长、颗粒破碎等问题限制了其应用。本研究评价了生物炭和磁性生物炭(MBC)作为载体加速形成和提高稳定性。MBC通过提供微生物附着点减少了启动时间,解决了操作不稳定性问题。在稳定运行期间,以mbc为核心的HAGS表现出更高的微生物代谢活性,细胞外聚合物质分泌增加(对稳定性至关重要),微生物多样性增强。重要的是,MBC的Fe3O4负载抑制了丝状真菌的过度生长,将丰度从2 × 1010(无材料)降低到3 × 108拷贝/g干污泥。因此,MBC被证明是HAGS的关键优化策略,可以通过加速颗粒形成并通过fe3o4介导的真菌过度生长抑制来确保长期稳定性,从而可靠地应用于高盐废水处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Magnetic biochar-cored halophilic aerobic granules: Novel strategy for rapid formation and structural stability enhancement

Magnetic biochar-cored halophilic aerobic granules: Novel strategy for rapid formation and structural stability enhancement
Halophilic aerobic granular sludge (HAGS) effectively treats hypersaline wastewater, offering advantages of structural compactness, microbial diversity, long functional bacteria retention, and high shock tolerance. However, long start-up times and granule disintegration limit its application. This study evaluated biochar and magnetic biochar (MBC) as carriers to accelerate formation and enhance stability. MBC reduced start-up time by providing microbial attachment sites and resolved operational instability. MBC-cored HAGS exhibited higher microbial metabolic activity, increased extracellular polymeric substance secretion (critical for stability), and enhanced microbial diversity during stable operation. Crucially, MBC’s Fe3O4 loading inhibited filamentous fungal overgrowth, reducing abundance from 2 × 1010 (without material) to 3 × 108 copies/g dry sludge. Thus, MBC proves to be a key optimization strategy for HAGS, enabling reliable application in hypersaline wastewater treatment by accelerating granule formation and ensuring long-term stability through Fe3O4-mediated inhibition of fungal overgrowth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioresource Technology
Bioresource Technology 工程技术-能源与燃料
CiteScore
20.80
自引率
19.30%
发文量
2013
审稿时长
12 days
期刊介绍: Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies. Topics include: • Biofuels: liquid and gaseous biofuels production, modeling and economics • Bioprocesses and bioproducts: biocatalysis and fermentations • Biomass and feedstocks utilization: bioconversion of agro-industrial residues • Environmental protection: biological waste treatment • Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信