电容去离子中锂-锰氧化物插层电极从海水淡化盐水中电化学提取锂

Wesam Abd El-Fattah , Ahlem Guesmi , Naoufel Ben Hamadi , Ahmad A. Alluhaybi , Dalia S. Muslim , Mohamed E.A. Ali
{"title":"电容去离子中锂-锰氧化物插层电极从海水淡化盐水中电化学提取锂","authors":"Wesam Abd El-Fattah ,&nbsp;Ahlem Guesmi ,&nbsp;Naoufel Ben Hamadi ,&nbsp;Ahmad A. Alluhaybi ,&nbsp;Dalia S. Muslim ,&nbsp;Mohamed E.A. Ali","doi":"10.1016/j.nxmate.2025.100953","DOIUrl":null,"url":null,"abstract":"<div><div>The intensifying global demand for lithium necessitates the development of sustainable extraction pathways. Recovery of lithium from reverse osmosis (RO) desalination brine offers a compelling strategy to mitigate resource scarcity while valorising waste streams. This study investigates the application of capacitive deionization (CDI), an emerging electrochemical separation technology, for the selective recovery of lithium from RO brine solutions, emphasizing its low energy consumption and cost-effective operation. A lithium manganese oxide (LiMn₂O₄, LMO) sorbent was synthesized via a high-temperature solid-phase method and integrated as the cathodic material in a CDI cell operated at 1.1 V. The system was evaluated using a synthetic brine solution with a Li⁺/Na⁺ molar ratio of 1:30, representative of typical RO brine compositions. Comprehensive material characterization of the LMO employing scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) confirmed the successful formation of a spinel-phase structure with heterogeneous morphology of the prepared LMO. Under optimized operating conditions, the system achieved a lithium electrosorption capacity of 16.14 mg g⁻¹ , with minimal sodium uptake (0.02 %), demonstrating remarkable ion selectivity of lithium ions. These findings highlight the potential of CDI as a scalable and sustainable process for lithium recovery from saline waste streams. The integration of LMO-based CDI systems into desalination systems presents a dual-benefit approach, coupling water treatment with strategic resource recovery and advancing the principles of a circular economy.</div></div>","PeriodicalId":100958,"journal":{"name":"Next Materials","volume":"9 ","pages":"Article 100953"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical lithium extraction from desalination brine via lithium-manganese oxide intercalation electrodes in capacitive deionization\",\"authors\":\"Wesam Abd El-Fattah ,&nbsp;Ahlem Guesmi ,&nbsp;Naoufel Ben Hamadi ,&nbsp;Ahmad A. Alluhaybi ,&nbsp;Dalia S. Muslim ,&nbsp;Mohamed E.A. Ali\",\"doi\":\"10.1016/j.nxmate.2025.100953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The intensifying global demand for lithium necessitates the development of sustainable extraction pathways. Recovery of lithium from reverse osmosis (RO) desalination brine offers a compelling strategy to mitigate resource scarcity while valorising waste streams. This study investigates the application of capacitive deionization (CDI), an emerging electrochemical separation technology, for the selective recovery of lithium from RO brine solutions, emphasizing its low energy consumption and cost-effective operation. A lithium manganese oxide (LiMn₂O₄, LMO) sorbent was synthesized via a high-temperature solid-phase method and integrated as the cathodic material in a CDI cell operated at 1.1 V. The system was evaluated using a synthetic brine solution with a Li⁺/Na⁺ molar ratio of 1:30, representative of typical RO brine compositions. Comprehensive material characterization of the LMO employing scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) confirmed the successful formation of a spinel-phase structure with heterogeneous morphology of the prepared LMO. Under optimized operating conditions, the system achieved a lithium electrosorption capacity of 16.14 mg g⁻¹ , with minimal sodium uptake (0.02 %), demonstrating remarkable ion selectivity of lithium ions. These findings highlight the potential of CDI as a scalable and sustainable process for lithium recovery from saline waste streams. The integration of LMO-based CDI systems into desalination systems presents a dual-benefit approach, coupling water treatment with strategic resource recovery and advancing the principles of a circular economy.</div></div>\",\"PeriodicalId\":100958,\"journal\":{\"name\":\"Next Materials\",\"volume\":\"9 \",\"pages\":\"Article 100953\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S294982282500471X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S294982282500471X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

全球对锂的需求不断增加,需要开发可持续的提取途径。从反渗透(RO)海水淡化盐水中回收锂提供了一种令人信服的策略,可以缓解资源短缺,同时提高废物流的价值。本研究探讨了电容性去离子(CDI)这一新兴的电化学分离技术在RO卤水溶液中选择性回收锂的应用,强调了其低能耗和低成本的操作。采用高温固相法合成了一种锂锰氧化物(LiMn₂O₄,LMO)吸附剂,并将其作为阴极材料集成在1.1 V的CDI电池中。采用Li + /Na +摩尔比为1:30的合成卤水溶液对该体系进行了评价,该卤水组分代表了典型的反渗透卤水组成。利用扫描电镜(SEM)、能量色散x射线能谱(EDX)和x射线衍射(XRD)对LMO进行了综合材料表征,证实制备的LMO成功形成了具有异质形貌的尖晶石相结构。在优化的操作条件下,该系统的锂电吸附量为16.14 mg g⁻¹ ,钠摄入量最小(0.02 %),显示出锂离子的显著选择性。这些发现突出了CDI作为一种可扩展和可持续的从盐废物流中回收锂的工艺的潜力。将基于lmo的CDI系统集成到海水淡化系统中呈现出一种双重效益的方法,将水处理与战略性资源回收结合起来,并推进循环经济原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrochemical lithium extraction from desalination brine via lithium-manganese oxide intercalation electrodes in capacitive deionization
The intensifying global demand for lithium necessitates the development of sustainable extraction pathways. Recovery of lithium from reverse osmosis (RO) desalination brine offers a compelling strategy to mitigate resource scarcity while valorising waste streams. This study investigates the application of capacitive deionization (CDI), an emerging electrochemical separation technology, for the selective recovery of lithium from RO brine solutions, emphasizing its low energy consumption and cost-effective operation. A lithium manganese oxide (LiMn₂O₄, LMO) sorbent was synthesized via a high-temperature solid-phase method and integrated as the cathodic material in a CDI cell operated at 1.1 V. The system was evaluated using a synthetic brine solution with a Li⁺/Na⁺ molar ratio of 1:30, representative of typical RO brine compositions. Comprehensive material characterization of the LMO employing scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) confirmed the successful formation of a spinel-phase structure with heterogeneous morphology of the prepared LMO. Under optimized operating conditions, the system achieved a lithium electrosorption capacity of 16.14 mg g⁻¹ , with minimal sodium uptake (0.02 %), demonstrating remarkable ion selectivity of lithium ions. These findings highlight the potential of CDI as a scalable and sustainable process for lithium recovery from saline waste streams. The integration of LMO-based CDI systems into desalination systems presents a dual-benefit approach, coupling water treatment with strategic resource recovery and advancing the principles of a circular economy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信