革命性的文本数据洞察:文本数据分析中变形和聚类之间的双重关系的全面回顾

IF 12.7 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Nazila Pourhaji Aghayengejeh , M.A. Balafar , Narjes Nikzad Khasmakhi
{"title":"革命性的文本数据洞察:文本数据分析中变形和聚类之间的双重关系的全面回顾","authors":"Nazila Pourhaji Aghayengejeh ,&nbsp;M.A. Balafar ,&nbsp;Narjes Nikzad Khasmakhi","doi":"10.1016/j.cosrev.2025.100792","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, the integration of transformer models and clustering techniques has gained significant attention in the research community. Transformers excel at feature extraction, representation learning, and understanding data, which helps improve the accuracy and efficiency of clustering tasks. Conversely, clustering methods play a critical role in managing data distribution, enhancing interpretability, and improving the training of transformer models. This review looks at the dual relationship between these two domains: how transformers can advance clustering methodologies and how clustering techniques can optimize transformer performance. By examining this interaction, the paper highlights promising directions for future research.</div></div>","PeriodicalId":48633,"journal":{"name":"Computer Science Review","volume":"58 ","pages":"Article 100792"},"PeriodicalIF":12.7000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revolutionizing textual data insights: A comprehensive review of the dual relationship between transformers and clustering in textual data analysis\",\"authors\":\"Nazila Pourhaji Aghayengejeh ,&nbsp;M.A. Balafar ,&nbsp;Narjes Nikzad Khasmakhi\",\"doi\":\"10.1016/j.cosrev.2025.100792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In recent years, the integration of transformer models and clustering techniques has gained significant attention in the research community. Transformers excel at feature extraction, representation learning, and understanding data, which helps improve the accuracy and efficiency of clustering tasks. Conversely, clustering methods play a critical role in managing data distribution, enhancing interpretability, and improving the training of transformer models. This review looks at the dual relationship between these two domains: how transformers can advance clustering methodologies and how clustering techniques can optimize transformer performance. By examining this interaction, the paper highlights promising directions for future research.</div></div>\",\"PeriodicalId\":48633,\"journal\":{\"name\":\"Computer Science Review\",\"volume\":\"58 \",\"pages\":\"Article 100792\"},\"PeriodicalIF\":12.7000,\"publicationDate\":\"2025-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Science Review\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1574013725000681\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science Review","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574013725000681","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

近年来,变压器模型与聚类技术的集成得到了研究界的广泛关注。transformer擅长于特征提取、表示学习和数据理解,这有助于提高聚类任务的准确性和效率。相反,聚类方法在管理数据分布、增强可解释性和改进变压器模型的训练方面发挥着关键作用。这篇综述着眼于这两个领域之间的双重关系:变压器如何推进聚类方法和聚类技术如何优化变压器性能。通过研究这种相互作用,本文强调了未来研究的有希望的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Revolutionizing textual data insights: A comprehensive review of the dual relationship between transformers and clustering in textual data analysis
In recent years, the integration of transformer models and clustering techniques has gained significant attention in the research community. Transformers excel at feature extraction, representation learning, and understanding data, which helps improve the accuracy and efficiency of clustering tasks. Conversely, clustering methods play a critical role in managing data distribution, enhancing interpretability, and improving the training of transformer models. This review looks at the dual relationship between these two domains: how transformers can advance clustering methodologies and how clustering techniques can optimize transformer performance. By examining this interaction, the paper highlights promising directions for future research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Science Review
Computer Science Review Computer Science-General Computer Science
CiteScore
32.70
自引率
0.00%
发文量
26
审稿时长
51 days
期刊介绍: Computer Science Review, a publication dedicated to research surveys and expository overviews of open problems in computer science, targets a broad audience within the field seeking comprehensive insights into the latest developments. The journal welcomes articles from various fields as long as their content impacts the advancement of computer science. In particular, articles that review the application of well-known Computer Science methods to other areas are in scope only if these articles advance the fundamental understanding of those methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信