Cux-MOF-5增强CO2吸附:最佳掺杂和再生性能

IF 7.9 3区 材料科学 Q1 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
Ruochen Lei, Wei Shen, Zilong Yang, Hongxiao Jin, Wenxiang Chai, Xiaolin Guo, Hongliang Ge, Dingfeng Jin
{"title":"Cux-MOF-5增强CO2吸附:最佳掺杂和再生性能","authors":"Ruochen Lei,&nbsp;Wei Shen,&nbsp;Zilong Yang,&nbsp;Hongxiao Jin,&nbsp;Wenxiang Chai,&nbsp;Xiaolin Guo,&nbsp;Hongliang Ge,&nbsp;Dingfeng Jin","doi":"10.1016/j.mtsust.2025.101181","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces a method for synthesizing Cu<sub>x</sub>-MOF-5 material in one step by doping with Cu<sup>2+</sup>. The synthesized Cu<sub>x</sub>-MOF-5 materials at different doping concentrations were characterized using XRD, FT-IR, TGA, SEM, and N<sub>2</sub> adsorption-desorption isotherms techniques. The CO<sub>2</sub> adsorption capacity of the adsorbent was tested using a gas adsorption instrument ASAP 2020 at 274.15 K and 0–1 bar. It was concluded that the optimal process conditions were hydrothermal synthesis at 150 °C with Cu<sup>2+</sup>:Zn<sup>2+</sup> is 0.05:1. The maximum CO<sub>2</sub> adsorption capacity of Cu<sub>x</sub>-MOF-5 material was 4.6052 mmol/g, which was nearly 31 % higher than that of MOF-5 without Cu<sup>2+</sup> doping. Even after eight consecutive adsorption-desorption cycles, the regeneration rate of the composite material remained above 97 %, demonstrating complete regenerability. Factors enhancing the material's dynamic adsorption capacity for CO<sub>2</sub> include the presence of micropores, Cu<sup>2+</sup>'s affinity for CO<sub>2</sub>, and the imbalance of surface electrostatics due to Cu<sup>2+</sup> and Zn<sup>2+</sup> exchange. However, when Cu<sup>2+</sup>:Zn<sup>2+</sup> exceeds 0.25:1, a large amount of Cu-BDC is generated, leading to a rapid decline in the material's adsorption performance. The obtained adsorbent parameters indicate that Cu-MOF-5 material is a promising CO<sub>2</sub> adsorbent.</div></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"31 ","pages":"Article 101181"},"PeriodicalIF":7.9000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced CO2 adsorption in Cux-MOF-5: Optimal doping and regeneration performance\",\"authors\":\"Ruochen Lei,&nbsp;Wei Shen,&nbsp;Zilong Yang,&nbsp;Hongxiao Jin,&nbsp;Wenxiang Chai,&nbsp;Xiaolin Guo,&nbsp;Hongliang Ge,&nbsp;Dingfeng Jin\",\"doi\":\"10.1016/j.mtsust.2025.101181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper introduces a method for synthesizing Cu<sub>x</sub>-MOF-5 material in one step by doping with Cu<sup>2+</sup>. The synthesized Cu<sub>x</sub>-MOF-5 materials at different doping concentrations were characterized using XRD, FT-IR, TGA, SEM, and N<sub>2</sub> adsorption-desorption isotherms techniques. The CO<sub>2</sub> adsorption capacity of the adsorbent was tested using a gas adsorption instrument ASAP 2020 at 274.15 K and 0–1 bar. It was concluded that the optimal process conditions were hydrothermal synthesis at 150 °C with Cu<sup>2+</sup>:Zn<sup>2+</sup> is 0.05:1. The maximum CO<sub>2</sub> adsorption capacity of Cu<sub>x</sub>-MOF-5 material was 4.6052 mmol/g, which was nearly 31 % higher than that of MOF-5 without Cu<sup>2+</sup> doping. Even after eight consecutive adsorption-desorption cycles, the regeneration rate of the composite material remained above 97 %, demonstrating complete regenerability. Factors enhancing the material's dynamic adsorption capacity for CO<sub>2</sub> include the presence of micropores, Cu<sup>2+</sup>'s affinity for CO<sub>2</sub>, and the imbalance of surface electrostatics due to Cu<sup>2+</sup> and Zn<sup>2+</sup> exchange. However, when Cu<sup>2+</sup>:Zn<sup>2+</sup> exceeds 0.25:1, a large amount of Cu-BDC is generated, leading to a rapid decline in the material's adsorption performance. The obtained adsorbent parameters indicate that Cu-MOF-5 material is a promising CO<sub>2</sub> adsorbent.</div></div>\",\"PeriodicalId\":18322,\"journal\":{\"name\":\"Materials Today Sustainability\",\"volume\":\"31 \",\"pages\":\"Article 101181\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Sustainability\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589234725001101\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Sustainability","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589234725001101","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种用Cu2+掺杂一步合成Cux-MOF-5材料的方法。采用XRD、FT-IR、TGA、SEM和N2吸附-脱附等温线技术对不同掺杂浓度下合成的Cux-MOF-5材料进行了表征。采用气体吸附仪ASAP 2020测试吸附剂在274.15 K和0-1 bar条件下的CO2吸附能力。结果表明,最佳工艺条件为150℃水热合成,Cu2+:Zn2+为0.05:1。Cux-MOF-5材料的最大CO2吸附量为4.6052 mmol/g,比未掺杂Cu2+的MOF-5材料提高了近31%。即使在连续8次吸附-解吸循环后,复合材料的再生率仍保持在97%以上,表现出完全的可再生性。提高材料对CO2动态吸附能力的因素包括微孔的存在、Cu2+对CO2的亲和力以及Cu2+和Zn2+交换导致的表面静电不平衡。但当Cu2+:Zn2+超过0.25:1时,会产生大量Cu-BDC,导致材料的吸附性能迅速下降。所得吸附剂参数表明Cu-MOF-5材料是一种很有前途的CO2吸附剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced CO2 adsorption in Cux-MOF-5: Optimal doping and regeneration performance
This paper introduces a method for synthesizing Cux-MOF-5 material in one step by doping with Cu2+. The synthesized Cux-MOF-5 materials at different doping concentrations were characterized using XRD, FT-IR, TGA, SEM, and N2 adsorption-desorption isotherms techniques. The CO2 adsorption capacity of the adsorbent was tested using a gas adsorption instrument ASAP 2020 at 274.15 K and 0–1 bar. It was concluded that the optimal process conditions were hydrothermal synthesis at 150 °C with Cu2+:Zn2+ is 0.05:1. The maximum CO2 adsorption capacity of Cux-MOF-5 material was 4.6052 mmol/g, which was nearly 31 % higher than that of MOF-5 without Cu2+ doping. Even after eight consecutive adsorption-desorption cycles, the regeneration rate of the composite material remained above 97 %, demonstrating complete regenerability. Factors enhancing the material's dynamic adsorption capacity for CO2 include the presence of micropores, Cu2+'s affinity for CO2, and the imbalance of surface electrostatics due to Cu2+ and Zn2+ exchange. However, when Cu2+:Zn2+ exceeds 0.25:1, a large amount of Cu-BDC is generated, leading to a rapid decline in the material's adsorption performance. The obtained adsorbent parameters indicate that Cu-MOF-5 material is a promising CO2 adsorbent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
6.40%
发文量
174
审稿时长
32 days
期刊介绍: Materials Today Sustainability is a multi-disciplinary journal covering all aspects of sustainability through materials science. With a rapidly increasing population with growing demands, materials science has emerged as a critical discipline toward protecting of the environment and ensuring the long term survival of future generations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信