Wencong Xing, Yong Shi, Sarah Alotaibi, Lai Wei, Xuetao Guo, Omowunmi A. Sadik, Baohua Gu, Xujun Liang* and Lijie Zhang*,
{"title":"老化微塑料中溶解有机物对汞(II)的暗还原:机制和意义。","authors":"Wencong Xing, Yong Shi, Sarah Alotaibi, Lai Wei, Xuetao Guo, Omowunmi A. Sadik, Baohua Gu, Xujun Liang* and Lijie Zhang*, ","doi":"10.1021/acs.est.5c07060","DOIUrl":null,"url":null,"abstract":"<p >Dissolved organic matter (DOM) plays a critical role in the environmental cycling and transformation of mercury (Hg), primarily due to its strong reducing and complexing properties toward mercuric Hg(II). Microplastics-derived DOM (MPs-DOM), particularly that released during photoaging, represents an emerging source of DOM in aquatic environments. However, its capacity to mediate Hg(II) transformation remains largely unexplored. This study investigated dark reduction of Hg(II) by DOM released from aging polystyrene, polyvinyl chloride, and polylactic acid under simulated environmental conditions. The results show that, under dark conditions, DOM from photoaged MPs suspensions reduced over 30% of Hg(II) within 10 min, whereas DOM from dark-aged MPs suspensions exhibited negligible Hg(II) reduction activity. Further analyses showed that photoaging enhanced the electron-donating capacity of MPs-DOM by increasing phenol-like compounds, which promoted Hg(II) reduction via electron transfer through phenolic hydroxyl groups. Notably, MPs-DOM released during photoaging outperformed the Suwannee River natural organic matter (SRNOM) in reducing Hg(II), likely due to compositional differences in Hg(II)-complexing functional groups. When mixed together, elevated concentrations of MPs-DOM dominated over SRNOM, favoring Hg(II) reduction as the primary pathway. Given the growing prevalence of MPs-DOM in aquatic ecosystems and the persistence of dark reactions in light-limited environments, this study underscores the significant role of MPs-DOM in promoting dark Hg(II) reduction, highlighting a previously underrecognized pathway affecting Hg cycling.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"59 32","pages":"17037–17046"},"PeriodicalIF":11.3000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dark Reduction of Hg(II) by Dissolved Organic Matter Derived from Aging Microplastics: Mechanisms and Implications\",\"authors\":\"Wencong Xing, Yong Shi, Sarah Alotaibi, Lai Wei, Xuetao Guo, Omowunmi A. Sadik, Baohua Gu, Xujun Liang* and Lijie Zhang*, \",\"doi\":\"10.1021/acs.est.5c07060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Dissolved organic matter (DOM) plays a critical role in the environmental cycling and transformation of mercury (Hg), primarily due to its strong reducing and complexing properties toward mercuric Hg(II). Microplastics-derived DOM (MPs-DOM), particularly that released during photoaging, represents an emerging source of DOM in aquatic environments. However, its capacity to mediate Hg(II) transformation remains largely unexplored. This study investigated dark reduction of Hg(II) by DOM released from aging polystyrene, polyvinyl chloride, and polylactic acid under simulated environmental conditions. The results show that, under dark conditions, DOM from photoaged MPs suspensions reduced over 30% of Hg(II) within 10 min, whereas DOM from dark-aged MPs suspensions exhibited negligible Hg(II) reduction activity. Further analyses showed that photoaging enhanced the electron-donating capacity of MPs-DOM by increasing phenol-like compounds, which promoted Hg(II) reduction via electron transfer through phenolic hydroxyl groups. Notably, MPs-DOM released during photoaging outperformed the Suwannee River natural organic matter (SRNOM) in reducing Hg(II), likely due to compositional differences in Hg(II)-complexing functional groups. When mixed together, elevated concentrations of MPs-DOM dominated over SRNOM, favoring Hg(II) reduction as the primary pathway. Given the growing prevalence of MPs-DOM in aquatic ecosystems and the persistence of dark reactions in light-limited environments, this study underscores the significant role of MPs-DOM in promoting dark Hg(II) reduction, highlighting a previously underrecognized pathway affecting Hg cycling.</p>\",\"PeriodicalId\":36,\"journal\":{\"name\":\"环境科学与技术\",\"volume\":\"59 32\",\"pages\":\"17037–17046\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"环境科学与技术\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.est.5c07060\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.est.5c07060","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Dark Reduction of Hg(II) by Dissolved Organic Matter Derived from Aging Microplastics: Mechanisms and Implications
Dissolved organic matter (DOM) plays a critical role in the environmental cycling and transformation of mercury (Hg), primarily due to its strong reducing and complexing properties toward mercuric Hg(II). Microplastics-derived DOM (MPs-DOM), particularly that released during photoaging, represents an emerging source of DOM in aquatic environments. However, its capacity to mediate Hg(II) transformation remains largely unexplored. This study investigated dark reduction of Hg(II) by DOM released from aging polystyrene, polyvinyl chloride, and polylactic acid under simulated environmental conditions. The results show that, under dark conditions, DOM from photoaged MPs suspensions reduced over 30% of Hg(II) within 10 min, whereas DOM from dark-aged MPs suspensions exhibited negligible Hg(II) reduction activity. Further analyses showed that photoaging enhanced the electron-donating capacity of MPs-DOM by increasing phenol-like compounds, which promoted Hg(II) reduction via electron transfer through phenolic hydroxyl groups. Notably, MPs-DOM released during photoaging outperformed the Suwannee River natural organic matter (SRNOM) in reducing Hg(II), likely due to compositional differences in Hg(II)-complexing functional groups. When mixed together, elevated concentrations of MPs-DOM dominated over SRNOM, favoring Hg(II) reduction as the primary pathway. Given the growing prevalence of MPs-DOM in aquatic ecosystems and the persistence of dark reactions in light-limited environments, this study underscores the significant role of MPs-DOM in promoting dark Hg(II) reduction, highlighting a previously underrecognized pathway affecting Hg cycling.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.