{"title":"segamba - v2:用于一般3D医学图像分割的远程顺序建模曼巴。","authors":"Zhaohu Xing,Tian Ye,Yijun Yang,Du Cai,Baowen Gai,Xiao-Jian Wu,Feng Gao,Lei Zhu","doi":"10.1109/tmi.2025.3589797","DOIUrl":null,"url":null,"abstract":"The Transformer architecture has demonstrated remarkable results in 3D medical image segmentation due to its capability of modeling global relationships. However, it poses a significant computational burden when processing high-dimensional medical images. Mamba, as a State Space Model (SSM), has recently emerged as a notable approach for modeling long-range dependencies in sequential data. Although a substantial amount of Mamba-based research has focused on natural language and 2D image processing, few studies explore the capability of Mamba on 3D medical images. In this paper, we propose SegMamba-V2, a novel 3D medical image segmentation model, to effectively capture long-range dependencies within whole-volume features at each scale. To achieve this goal, we first devise a hierarchical scale downsampling strategy to enhance the receptive field and mitigate information loss during downsampling. Furthermore, we design a novel tri-orientated spatial Mamba block that extends the global dependency modeling process from one plane to three orthogonal planes to improve feature representation capability. Moreover, we collect and annotate a large-scale dataset (named CRC-2000) with fine-grained categories to facilitate benchmarking evaluation in 3D colorectal cancer (CRC) segmentation. We evaluate the effectiveness of our SegMamba-V2 on CRC-2000 and three other large-scale 3D medical image segmentation datasets, covering various modalities, organs, and segmentation targets. Experimental results demonstrate that our Segmamba-V2 outperforms state-of-the-art methods by a significant margin, which indicates the universality and effectiveness of the proposed model on 3D medical image segmentation tasks. The code for SegMamba-V2 is publicly available at: https://github.com/ge-xing/SegMamba-V2.","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":"18 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SegMamba-V2: Long-range Sequential Modeling Mamba For General 3D Medical Image Segmentation.\",\"authors\":\"Zhaohu Xing,Tian Ye,Yijun Yang,Du Cai,Baowen Gai,Xiao-Jian Wu,Feng Gao,Lei Zhu\",\"doi\":\"10.1109/tmi.2025.3589797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Transformer architecture has demonstrated remarkable results in 3D medical image segmentation due to its capability of modeling global relationships. However, it poses a significant computational burden when processing high-dimensional medical images. Mamba, as a State Space Model (SSM), has recently emerged as a notable approach for modeling long-range dependencies in sequential data. Although a substantial amount of Mamba-based research has focused on natural language and 2D image processing, few studies explore the capability of Mamba on 3D medical images. In this paper, we propose SegMamba-V2, a novel 3D medical image segmentation model, to effectively capture long-range dependencies within whole-volume features at each scale. To achieve this goal, we first devise a hierarchical scale downsampling strategy to enhance the receptive field and mitigate information loss during downsampling. Furthermore, we design a novel tri-orientated spatial Mamba block that extends the global dependency modeling process from one plane to three orthogonal planes to improve feature representation capability. Moreover, we collect and annotate a large-scale dataset (named CRC-2000) with fine-grained categories to facilitate benchmarking evaluation in 3D colorectal cancer (CRC) segmentation. We evaluate the effectiveness of our SegMamba-V2 on CRC-2000 and three other large-scale 3D medical image segmentation datasets, covering various modalities, organs, and segmentation targets. Experimental results demonstrate that our Segmamba-V2 outperforms state-of-the-art methods by a significant margin, which indicates the universality and effectiveness of the proposed model on 3D medical image segmentation tasks. The code for SegMamba-V2 is publicly available at: https://github.com/ge-xing/SegMamba-V2.\",\"PeriodicalId\":13418,\"journal\":{\"name\":\"IEEE Transactions on Medical Imaging\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Medical Imaging\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/tmi.2025.3589797\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Medical Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/tmi.2025.3589797","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
SegMamba-V2: Long-range Sequential Modeling Mamba For General 3D Medical Image Segmentation.
The Transformer architecture has demonstrated remarkable results in 3D medical image segmentation due to its capability of modeling global relationships. However, it poses a significant computational burden when processing high-dimensional medical images. Mamba, as a State Space Model (SSM), has recently emerged as a notable approach for modeling long-range dependencies in sequential data. Although a substantial amount of Mamba-based research has focused on natural language and 2D image processing, few studies explore the capability of Mamba on 3D medical images. In this paper, we propose SegMamba-V2, a novel 3D medical image segmentation model, to effectively capture long-range dependencies within whole-volume features at each scale. To achieve this goal, we first devise a hierarchical scale downsampling strategy to enhance the receptive field and mitigate information loss during downsampling. Furthermore, we design a novel tri-orientated spatial Mamba block that extends the global dependency modeling process from one plane to three orthogonal planes to improve feature representation capability. Moreover, we collect and annotate a large-scale dataset (named CRC-2000) with fine-grained categories to facilitate benchmarking evaluation in 3D colorectal cancer (CRC) segmentation. We evaluate the effectiveness of our SegMamba-V2 on CRC-2000 and three other large-scale 3D medical image segmentation datasets, covering various modalities, organs, and segmentation targets. Experimental results demonstrate that our Segmamba-V2 outperforms state-of-the-art methods by a significant margin, which indicates the universality and effectiveness of the proposed model on 3D medical image segmentation tasks. The code for SegMamba-V2 is publicly available at: https://github.com/ge-xing/SegMamba-V2.
期刊介绍:
The IEEE Transactions on Medical Imaging (T-MI) is a journal that welcomes the submission of manuscripts focusing on various aspects of medical imaging. The journal encourages the exploration of body structure, morphology, and function through different imaging techniques, including ultrasound, X-rays, magnetic resonance, radionuclides, microwaves, and optical methods. It also promotes contributions related to cell and molecular imaging, as well as all forms of microscopy.
T-MI publishes original research papers that cover a wide range of topics, including but not limited to novel acquisition techniques, medical image processing and analysis, visualization and performance, pattern recognition, machine learning, and other related methods. The journal particularly encourages highly technical studies that offer new perspectives. By emphasizing the unification of medicine, biology, and imaging, T-MI seeks to bridge the gap between instrumentation, hardware, software, mathematics, physics, biology, and medicine by introducing new analysis methods.
While the journal welcomes strong application papers that describe novel methods, it directs papers that focus solely on important applications using medically adopted or well-established methods without significant innovation in methodology to other journals. T-MI is indexed in Pubmed® and Medline®, which are products of the United States National Library of Medicine.