{"title":"基于图转换器的自监督神经元形态表示。","authors":"Pengpeng Sheng,Gangming Zhao,Tingting Han,Lei Qu","doi":"10.1109/tmi.2025.3590484","DOIUrl":null,"url":null,"abstract":"Effective representation of neuronal morphology is essential for cell typing and understanding brain function. However, the complexity of neuronal morphology arises not only in inter-class structural differences but also in intra-class variations across developmental stages and environmental conditions. Such diversity poses significant challenges for existing methods in balancing robustness and discriminative power when representing neuronal morphology. To address this, we propose SGTMorph, a hybrid Graph Transformer framework that leverages the local topological modeling capabilities of graph neural networks and the global relational reasoning strengths of Transformers to explicitly encode neuronal structural information. SGTMorph incorporates a random walk-based positional encoding scheme to facilitate effective information propagation across neuronal graphs and introduces a spatially invariant encoding mechanism to improve adaptability to diverse morphologies. This integrated approach enables a robust and comprehensive representation of neuronal morphology while preserving biological fidelity. To enable label-free feature learning, we devise a self-supervised training strategy grounded in geometric and topological similarity metrics. Extensive experiments on five datasets demonstrate SGTMorph's superior performance in neuron morphology classification and retrieval tasks. Furthermore, its practical utility in neuroscience research is validated by accurate predictions of two functional properties: the laminar distribution of somas and axonal projection patterns. The code is publicly at: https://github.com/big-rain/SGTMorph.","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":"8 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-Supervised Neuron Morphology Representation with Graph Transformer.\",\"authors\":\"Pengpeng Sheng,Gangming Zhao,Tingting Han,Lei Qu\",\"doi\":\"10.1109/tmi.2025.3590484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effective representation of neuronal morphology is essential for cell typing and understanding brain function. However, the complexity of neuronal morphology arises not only in inter-class structural differences but also in intra-class variations across developmental stages and environmental conditions. Such diversity poses significant challenges for existing methods in balancing robustness and discriminative power when representing neuronal morphology. To address this, we propose SGTMorph, a hybrid Graph Transformer framework that leverages the local topological modeling capabilities of graph neural networks and the global relational reasoning strengths of Transformers to explicitly encode neuronal structural information. SGTMorph incorporates a random walk-based positional encoding scheme to facilitate effective information propagation across neuronal graphs and introduces a spatially invariant encoding mechanism to improve adaptability to diverse morphologies. This integrated approach enables a robust and comprehensive representation of neuronal morphology while preserving biological fidelity. To enable label-free feature learning, we devise a self-supervised training strategy grounded in geometric and topological similarity metrics. Extensive experiments on five datasets demonstrate SGTMorph's superior performance in neuron morphology classification and retrieval tasks. Furthermore, its practical utility in neuroscience research is validated by accurate predictions of two functional properties: the laminar distribution of somas and axonal projection patterns. The code is publicly at: https://github.com/big-rain/SGTMorph.\",\"PeriodicalId\":13418,\"journal\":{\"name\":\"IEEE Transactions on Medical Imaging\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Medical Imaging\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/tmi.2025.3590484\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Medical Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/tmi.2025.3590484","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Self-Supervised Neuron Morphology Representation with Graph Transformer.
Effective representation of neuronal morphology is essential for cell typing and understanding brain function. However, the complexity of neuronal morphology arises not only in inter-class structural differences but also in intra-class variations across developmental stages and environmental conditions. Such diversity poses significant challenges for existing methods in balancing robustness and discriminative power when representing neuronal morphology. To address this, we propose SGTMorph, a hybrid Graph Transformer framework that leverages the local topological modeling capabilities of graph neural networks and the global relational reasoning strengths of Transformers to explicitly encode neuronal structural information. SGTMorph incorporates a random walk-based positional encoding scheme to facilitate effective information propagation across neuronal graphs and introduces a spatially invariant encoding mechanism to improve adaptability to diverse morphologies. This integrated approach enables a robust and comprehensive representation of neuronal morphology while preserving biological fidelity. To enable label-free feature learning, we devise a self-supervised training strategy grounded in geometric and topological similarity metrics. Extensive experiments on five datasets demonstrate SGTMorph's superior performance in neuron morphology classification and retrieval tasks. Furthermore, its practical utility in neuroscience research is validated by accurate predictions of two functional properties: the laminar distribution of somas and axonal projection patterns. The code is publicly at: https://github.com/big-rain/SGTMorph.
期刊介绍:
The IEEE Transactions on Medical Imaging (T-MI) is a journal that welcomes the submission of manuscripts focusing on various aspects of medical imaging. The journal encourages the exploration of body structure, morphology, and function through different imaging techniques, including ultrasound, X-rays, magnetic resonance, radionuclides, microwaves, and optical methods. It also promotes contributions related to cell and molecular imaging, as well as all forms of microscopy.
T-MI publishes original research papers that cover a wide range of topics, including but not limited to novel acquisition techniques, medical image processing and analysis, visualization and performance, pattern recognition, machine learning, and other related methods. The journal particularly encourages highly technical studies that offer new perspectives. By emphasizing the unification of medicine, biology, and imaging, T-MI seeks to bridge the gap between instrumentation, hardware, software, mathematics, physics, biology, and medicine by introducing new analysis methods.
While the journal welcomes strong application papers that describe novel methods, it directs papers that focus solely on important applications using medically adopted or well-established methods without significant innovation in methodology to other journals. T-MI is indexed in Pubmed® and Medline®, which are products of the United States National Library of Medicine.