Kunshi Li, Bihan Shen, Fangyoumin Feng, Xueliang Li, Yue Wang, Na Feng, Zhixuan Tang, Liangxiao Ma, Hong Li
{"title":"通过样品合成改进患者药物反应预测的解纠缠生成模型。","authors":"Kunshi Li, Bihan Shen, Fangyoumin Feng, Xueliang Li, Yue Wang, Na Feng, Zhixuan Tang, Liangxiao Ma, Hong Li","doi":"10.1016/j.jpha.2024.101128","DOIUrl":null,"url":null,"abstract":"<p><p>Personalized drug response prediction from molecular data is an important challenge in precision medicine for treating cancer. Computational methods have been widely explored and have become increasingly accurate in recent years. However, the clinical application of prediction methods is still in its infancy due to large discrepancies between preclinial models and patients. We present a novel disentangled synthesis transfer network (DiSyn) for drug response prediction specifically designed for transfer learning from preclinical models to clinical patients. DiSyn uses a domain separation network (DSN) to disentangle drug response related features, employs data synthesis technology to increase the sample size and iteratively trains for better feature disentanglement. DiSyn is pretrained on large-scale unlabeled cancer samples and validated by three datasets, The Cancer Genome Atlas (TCGA), Investigation of Serial Studies to Predict Your Therapeutic Response With Imaging And moLecular Analysis 2 (I-SPY2) and Novartis Institutes for Biomedical Research Patient-Derived Xenograft Encyclopedia (NIBR PDXE), achieving competitive performance with the state-of-the-art methods on cancer patients and mice. Furthermore, the application of DiSyn to thousands of breast cancer patients show the heterogeneity in drug responses and demonstrate its potential value in biomarker discovery and drug combination prediction.</p>","PeriodicalId":94338,"journal":{"name":"Journal of pharmaceutical analysis","volume":"15 6","pages":"101128"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12268049/pdf/","citationCount":"0","resultStr":"{\"title\":\"A disentangled generative model for improved drug response prediction in patients via sample synthesis.\",\"authors\":\"Kunshi Li, Bihan Shen, Fangyoumin Feng, Xueliang Li, Yue Wang, Na Feng, Zhixuan Tang, Liangxiao Ma, Hong Li\",\"doi\":\"10.1016/j.jpha.2024.101128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Personalized drug response prediction from molecular data is an important challenge in precision medicine for treating cancer. Computational methods have been widely explored and have become increasingly accurate in recent years. However, the clinical application of prediction methods is still in its infancy due to large discrepancies between preclinial models and patients. We present a novel disentangled synthesis transfer network (DiSyn) for drug response prediction specifically designed for transfer learning from preclinical models to clinical patients. DiSyn uses a domain separation network (DSN) to disentangle drug response related features, employs data synthesis technology to increase the sample size and iteratively trains for better feature disentanglement. DiSyn is pretrained on large-scale unlabeled cancer samples and validated by three datasets, The Cancer Genome Atlas (TCGA), Investigation of Serial Studies to Predict Your Therapeutic Response With Imaging And moLecular Analysis 2 (I-SPY2) and Novartis Institutes for Biomedical Research Patient-Derived Xenograft Encyclopedia (NIBR PDXE), achieving competitive performance with the state-of-the-art methods on cancer patients and mice. Furthermore, the application of DiSyn to thousands of breast cancer patients show the heterogeneity in drug responses and demonstrate its potential value in biomarker discovery and drug combination prediction.</p>\",\"PeriodicalId\":94338,\"journal\":{\"name\":\"Journal of pharmaceutical analysis\",\"volume\":\"15 6\",\"pages\":\"101128\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12268049/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of pharmaceutical analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jpha.2024.101128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jpha.2024.101128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
A disentangled generative model for improved drug response prediction in patients via sample synthesis.
Personalized drug response prediction from molecular data is an important challenge in precision medicine for treating cancer. Computational methods have been widely explored and have become increasingly accurate in recent years. However, the clinical application of prediction methods is still in its infancy due to large discrepancies between preclinial models and patients. We present a novel disentangled synthesis transfer network (DiSyn) for drug response prediction specifically designed for transfer learning from preclinical models to clinical patients. DiSyn uses a domain separation network (DSN) to disentangle drug response related features, employs data synthesis technology to increase the sample size and iteratively trains for better feature disentanglement. DiSyn is pretrained on large-scale unlabeled cancer samples and validated by three datasets, The Cancer Genome Atlas (TCGA), Investigation of Serial Studies to Predict Your Therapeutic Response With Imaging And moLecular Analysis 2 (I-SPY2) and Novartis Institutes for Biomedical Research Patient-Derived Xenograft Encyclopedia (NIBR PDXE), achieving competitive performance with the state-of-the-art methods on cancer patients and mice. Furthermore, the application of DiSyn to thousands of breast cancer patients show the heterogeneity in drug responses and demonstrate its potential value in biomarker discovery and drug combination prediction.