应用动态图修正TI-RADS,减少甲状腺结节的不必要FNA。

Jiahui Ni, Yunyun Liu, Xiaolong Li, Beibei Ye, Hui Shi, Ying Zhang, Yifeng Zhang
{"title":"应用动态图修正TI-RADS,减少甲状腺结节的不必要FNA。","authors":"Jiahui Ni, Yunyun Liu, Xiaolong Li, Beibei Ye, Hui Shi, Ying Zhang, Yifeng Zhang","doi":"10.1177/13860291251357792","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Current guidelines recommend Fine Needle Aspiration (FNA) based on nodule size and ultrasound characteristics; however, these guidelines still lead to a certain amount of unnecessary FNAs.</p><p><strong>Objective: </strong>To develop a dynamic nomogram prediction model based on the ACR Thyroid Imaging, Reporting, and Data System (TI-RADS) to reduce unnecessary FNAs.</p><p><strong>Methods: </strong>This multicenter study analyzed 3313 thyroid nodules undergoing FNA. Univariate and multivariate logistic regression models were constructed. Patients were divided into a training cohort and two validation cohorts to compare diagnostic performance and unnecessary FNAs.</p><p><strong>Results: </strong>This nomogram achieved performance of Area Under the Curve (AUC) 0.914 (95%CI: 0.894-0.934), 0.923 (95%CI: 0.900-0.946), 0.948 (95%CI: 0.918-0.978) in the training, internal and external validation cohort. Using this model, the unnecessary FNA rates for nodules in ACR TI-RADS category 3 (TR3) have decreased from 99.4% to 0%, in TR4 from 77.6% to 47.1%, and in TR5 from 25.4% to 18.9% in Center1, in TR3 have decreased from 91.9% to 0%, in TR4 from 60.0% to 21.1%, and in TR5 from 11.5% to 4.5% in Center 2 (<i>p</i> < 0.01).</p><p><strong>Conclusions: </strong>This dynamic nomogram achieved better prediction of malignant thyroid nodules compared with the mentioned risk stratification system, leading to a more rational FNA strategy.</p>","PeriodicalId":93943,"journal":{"name":"Clinical hemorheology and microcirculation","volume":" ","pages":"131-144"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using dynamic nomogram to modify TI-RADS and reduce the unnecessary FNA of thyroid nodules.\",\"authors\":\"Jiahui Ni, Yunyun Liu, Xiaolong Li, Beibei Ye, Hui Shi, Ying Zhang, Yifeng Zhang\",\"doi\":\"10.1177/13860291251357792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Current guidelines recommend Fine Needle Aspiration (FNA) based on nodule size and ultrasound characteristics; however, these guidelines still lead to a certain amount of unnecessary FNAs.</p><p><strong>Objective: </strong>To develop a dynamic nomogram prediction model based on the ACR Thyroid Imaging, Reporting, and Data System (TI-RADS) to reduce unnecessary FNAs.</p><p><strong>Methods: </strong>This multicenter study analyzed 3313 thyroid nodules undergoing FNA. Univariate and multivariate logistic regression models were constructed. Patients were divided into a training cohort and two validation cohorts to compare diagnostic performance and unnecessary FNAs.</p><p><strong>Results: </strong>This nomogram achieved performance of Area Under the Curve (AUC) 0.914 (95%CI: 0.894-0.934), 0.923 (95%CI: 0.900-0.946), 0.948 (95%CI: 0.918-0.978) in the training, internal and external validation cohort. Using this model, the unnecessary FNA rates for nodules in ACR TI-RADS category 3 (TR3) have decreased from 99.4% to 0%, in TR4 from 77.6% to 47.1%, and in TR5 from 25.4% to 18.9% in Center1, in TR3 have decreased from 91.9% to 0%, in TR4 from 60.0% to 21.1%, and in TR5 from 11.5% to 4.5% in Center 2 (<i>p</i> < 0.01).</p><p><strong>Conclusions: </strong>This dynamic nomogram achieved better prediction of malignant thyroid nodules compared with the mentioned risk stratification system, leading to a more rational FNA strategy.</p>\",\"PeriodicalId\":93943,\"journal\":{\"name\":\"Clinical hemorheology and microcirculation\",\"volume\":\" \",\"pages\":\"131-144\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical hemorheology and microcirculation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/13860291251357792\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical hemorheology and microcirculation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/13860291251357792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/17 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:目前的指南推荐基于结节大小和超声特征的细针穿刺(FNA);然而,这些准则仍然会导致一定数量的不必要的FNAs。目的:建立一种基于ACR甲状腺成像、报告和数据系统(TI-RADS)的动态nomogram预测模型,以减少不必要的FNAs。方法:本多中心研究分析了3313例行FNA的甲状腺结节。建立了单因素和多因素logistic回归模型。患者被分为一个训练队列和两个验证队列,以比较诊断性能和不必要的FNAs。结果:该模态图在训练队列、内部验证队列和外部验证队列中的曲线下面积(AUC)分别为0.914 (95%CI: 0.894 ~ 0.934)、0.923 (95%CI: 0.900 ~ 0.946)、0.948 (95%CI: 0.918 ~ 0.978)。使用这个模型,结节的不必要的FNA)利率ACR TI-RADS 3级(古墓)从99.4%下降到0%,在TR4从77.6%提高到47.1%,并在Center1 TR5从25.4%降至18.9%,在古墓已经从91.9%下降到0%,在TR5 TR4从60.0%到21.1%,从11.5%到4.5%在中心2 (p结论:这种动态列线图实现更好的预测恶性甲状腺结节与提到的风险分层系统相比,导致更加理性FNA)策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using dynamic nomogram to modify TI-RADS and reduce the unnecessary FNA of thyroid nodules.

Background: Current guidelines recommend Fine Needle Aspiration (FNA) based on nodule size and ultrasound characteristics; however, these guidelines still lead to a certain amount of unnecessary FNAs.

Objective: To develop a dynamic nomogram prediction model based on the ACR Thyroid Imaging, Reporting, and Data System (TI-RADS) to reduce unnecessary FNAs.

Methods: This multicenter study analyzed 3313 thyroid nodules undergoing FNA. Univariate and multivariate logistic regression models were constructed. Patients were divided into a training cohort and two validation cohorts to compare diagnostic performance and unnecessary FNAs.

Results: This nomogram achieved performance of Area Under the Curve (AUC) 0.914 (95%CI: 0.894-0.934), 0.923 (95%CI: 0.900-0.946), 0.948 (95%CI: 0.918-0.978) in the training, internal and external validation cohort. Using this model, the unnecessary FNA rates for nodules in ACR TI-RADS category 3 (TR3) have decreased from 99.4% to 0%, in TR4 from 77.6% to 47.1%, and in TR5 from 25.4% to 18.9% in Center1, in TR3 have decreased from 91.9% to 0%, in TR4 from 60.0% to 21.1%, and in TR5 from 11.5% to 4.5% in Center 2 (p < 0.01).

Conclusions: This dynamic nomogram achieved better prediction of malignant thyroid nodules compared with the mentioned risk stratification system, leading to a more rational FNA strategy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信