神经可塑性的作用:通过神经康复改造脑功能。

Estelle Havila Earl, Archana Gaur, Sakthivadivel Varatharajan, Afna Ansari, Anala Billa, Naveen Ravi, Medala Kalpana, Prafull Kamble, Vandana Daulatabad, Anish Singhal, Vidya Ganji, Madhusudhan Umesh, Madhuri Taranikanti, Nitin Ashok John
{"title":"神经可塑性的作用:通过神经康复改造脑功能。","authors":"Estelle Havila Earl, Archana Gaur, Sakthivadivel Varatharajan, Afna Ansari, Anala Billa, Naveen Ravi, Medala Kalpana, Prafull Kamble, Vandana Daulatabad, Anish Singhal, Vidya Ganji, Madhusudhan Umesh, Madhuri Taranikanti, Nitin Ashok John","doi":"10.26574/maedica.2025.20.1.81","DOIUrl":null,"url":null,"abstract":"<p><p>The capability of the human brain to redeploy in accordance to the activities and experiences is deemed as neuroplasticity. As a result, neuroplasticity can be visualized as a required adaptation to all brain processes. Broadly classified into structural, functional, biochemical and behavioural neuroplasticity, structural neuroplasticity includes neurogenesis and synaptogenesis. Functional neuroplasticity operates with long term potentiation (LTP) and long term depression (LTD). Biochemical neuroplasticity avails the usage of genes such as apoE and Brain derived neurotrophic factor. Behavioural neuroplasticity utilizes the prefrontal cortex and nucleus accumbens, two parts of the brain that contribute to the rewarding properties of certain psychotropic drugs, showing plastic changes. Mirror neurons play an important role in neurorehabilitation by employing the process of functional synaptic plasticity. Non-invasive brain stimulation, including transcranial direct current stimulation (tDCS), repetitive transcranial magnetic stimulation (rTMS), deep brain stimulation and scrambler therapy for pain, utilize neuroplasticity for treatment in several disorders such as stroke, autism, Parkinsons, depression, etc.</p>","PeriodicalId":74094,"journal":{"name":"Maedica","volume":"20 1","pages":"81-89"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12123492/pdf/","citationCount":"0","resultStr":"{\"title\":\"Neuroplasticity in Action: Transforming Brain Function through Neurorehabilitation.\",\"authors\":\"Estelle Havila Earl, Archana Gaur, Sakthivadivel Varatharajan, Afna Ansari, Anala Billa, Naveen Ravi, Medala Kalpana, Prafull Kamble, Vandana Daulatabad, Anish Singhal, Vidya Ganji, Madhusudhan Umesh, Madhuri Taranikanti, Nitin Ashok John\",\"doi\":\"10.26574/maedica.2025.20.1.81\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The capability of the human brain to redeploy in accordance to the activities and experiences is deemed as neuroplasticity. As a result, neuroplasticity can be visualized as a required adaptation to all brain processes. Broadly classified into structural, functional, biochemical and behavioural neuroplasticity, structural neuroplasticity includes neurogenesis and synaptogenesis. Functional neuroplasticity operates with long term potentiation (LTP) and long term depression (LTD). Biochemical neuroplasticity avails the usage of genes such as apoE and Brain derived neurotrophic factor. Behavioural neuroplasticity utilizes the prefrontal cortex and nucleus accumbens, two parts of the brain that contribute to the rewarding properties of certain psychotropic drugs, showing plastic changes. Mirror neurons play an important role in neurorehabilitation by employing the process of functional synaptic plasticity. Non-invasive brain stimulation, including transcranial direct current stimulation (tDCS), repetitive transcranial magnetic stimulation (rTMS), deep brain stimulation and scrambler therapy for pain, utilize neuroplasticity for treatment in several disorders such as stroke, autism, Parkinsons, depression, etc.</p>\",\"PeriodicalId\":74094,\"journal\":{\"name\":\"Maedica\",\"volume\":\"20 1\",\"pages\":\"81-89\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12123492/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Maedica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26574/maedica.2025.20.1.81\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Maedica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26574/maedica.2025.20.1.81","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人类大脑根据活动和经验重新部署的能力被认为是神经可塑性。因此,神经可塑性可以被看作是对所有大脑过程的必要适应。结构神经可塑性分为结构神经可塑性、功能神经可塑性、生化神经可塑性和行为神经可塑性,其中包括神经发生和突触发生。功能性神经可塑性与长期增强(LTP)和长期抑制(LTD)共同作用。生化神经可塑性利用了apoE和脑源性神经营养因子等基因。行为神经可塑性利用前额叶皮层和伏隔核,这两个大脑部位有助于某些精神药物的奖励特性,表现出可塑性变化。镜像神经元通过功能性突触可塑性在神经康复中发挥重要作用。非侵入性脑刺激,包括经颅直流电刺激(tDCS)、重复经颅磁刺激(rTMS)、深部脑刺激和疼痛扰频治疗,利用神经可塑性治疗多种疾病,如中风、自闭症、帕金森症、抑郁症等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neuroplasticity in Action: Transforming Brain Function through Neurorehabilitation.

The capability of the human brain to redeploy in accordance to the activities and experiences is deemed as neuroplasticity. As a result, neuroplasticity can be visualized as a required adaptation to all brain processes. Broadly classified into structural, functional, biochemical and behavioural neuroplasticity, structural neuroplasticity includes neurogenesis and synaptogenesis. Functional neuroplasticity operates with long term potentiation (LTP) and long term depression (LTD). Biochemical neuroplasticity avails the usage of genes such as apoE and Brain derived neurotrophic factor. Behavioural neuroplasticity utilizes the prefrontal cortex and nucleus accumbens, two parts of the brain that contribute to the rewarding properties of certain psychotropic drugs, showing plastic changes. Mirror neurons play an important role in neurorehabilitation by employing the process of functional synaptic plasticity. Non-invasive brain stimulation, including transcranial direct current stimulation (tDCS), repetitive transcranial magnetic stimulation (rTMS), deep brain stimulation and scrambler therapy for pain, utilize neuroplasticity for treatment in several disorders such as stroke, autism, Parkinsons, depression, etc.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信